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ABSTRACT

A cloud-based manufacturing process monitoring framework for online smart diagnosis services has
been developed with the aim of performing tool condition monitoring during machining of difficult-to-
machine materials. The proposed architecture allows to share process monitoring tasks between
different resources, which can be geographically dislocated and managed by actors with different
competences and functions. Distributed resources with enhanced computation and data storage
capability allow to improve the efficiency of tool condition diagnosis and enable more robust deci-
sion-making, exploiting large information and knowledge sharing. Diagnosis on tool conditions is
offered as a cloud service, using an architecture where the computing resources in the cloud are
connected to the physical manufacturing system realising a complex cyber-physical system using
sensor and network communication. Based on sensorial data acquired at the factory level, smart online
diagnosis on consumed tool life and tool breakage occurrence is carried out through knowledge-based
algorithms and cognitive pattern recognition paradigms. On the basis of the cloud diagnosis, the local
server activates the proper corrective action to be taken, such as tool replacement, process halting or
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parameters change, sending the right command to the machine tool control.

1. Introduction

The evolution of modern advanced manufacturing systems is
going towards the increasing integration of information and
communication technologies (ICTs) in the production environ-
ment, realising the so-called ‘Smart factories’” where physical
objects are seamlessly integrated into the information network
(Smit et al. 2016).

The combination of the newest developments of ICT, such
as cyber-physical systems (CPS) based on the use of sensors,
processors and communication technologies, and the newest
developments of manufacturing science and technology, is
producing new manufacturing paradigms such as cyber-phy-
sical production systems (CPPS) and is considered the driver of
the Fourth Industrial Revolution, also known as Industry 4.0.
(Monostori 2014; Monostori et al. 2016; Wang, Toérngren, and
Onori 2015).

A key role in the realisation of these new manufacturing
paradigms is played by cloud computing. The extension of the
cloud computing paradigm to the manufacturing sector has
generated the concept of cloud manufacturing, recognised as
one of the most innovative Key Enabling Technologies for
modern manufacturing industry, which is claiming increasing
attention in manufacturing research (Horizon 2020; Zhang
et al. 2012; Xu 2012; Tao et al. 2011; Li et al. 2010).

Cloud technologies provide an environment to connect
and share distributed manufacturing resources including
knowledge, computing and software tools, as well as physical
resources via the Internet networking infrastructure, and can
be employed for a wide range of manufacturing applications

such as process planning, machine tool monitoring, process
monitoring and control (Zhang et al. 2012; Xu 2012; Tao et al.
2011; Li et al. 2010).

In this paper, a new cloud manufacturing framework is
developed to realise online process monitoring through
cloud-based smart diagnosis services. The framework is con-
figured with particular reference to tool condition monitoring
(TCM) in the machining of difficult-to-machine materials,
which is a critical issue due to the rapid development of tool
wear and the unpredictable occurrence of catastrophic tool
failure (CTF) (Teti et al. 2010; Teti 2015; Segreto, Caggiano, and
Teti 2015).

2. State of the art on cloud manufacturing

Cloud manufacturing may be defined as ‘an integrated CPS
that can provide on-demand manufacturing services, digitally
and physically, at the best utilisation of manufacturing
resources’ (Wang, Térngren, and Onori 2015).

Compared with cloud computing, the services that are
managed include not only computational and software
resources, but also various digital and physical manufacturing
resources, including manufacturing software, manufacturing
facilities and manufacturing capabilities (Wang, Toérngren,
and Onori 2015).

This manufacturing paradigm may significantly change the
way manufacturing services are provided and accessed, giving
to the user ubiquitous access via cloud to CPPS, including
smart machines and large amounts of data generated through
sensor systems and intelligent computation (Wu et al. 2015).
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At present, the main research gaps of the cloud manufac-
turing paradigm can be summarised as follows: cloud-based
control platforms; real-time capability of production cloud
platforms; interfaces between cloud and production system;
and service-based provision of automation functionalities.

In order to tackle the above research gaps, diverse authors
in the very recent literature have proposed innovative cloud
manufacturing applications for several manufacturing pur-
poses at different levels.

In Wu et al. (2013a), a review of research initiatives and
applications of cloud technologies in collaborative design, dis-
tributed manufacturing, data mining, semantic web technology
and virtualisation is reported. The concept of cloud-based
design and manufacturing (CBDM) is proposed, expanding the
cloud computing paradigm to the field of computer-aided
design and manufacturing. CBDM represents a service-oriented
networked product development model in which service con-
sumers are able to configure, select and utilise customised
resources and services for product realisation ranging from
computer-aided engineering software to reconfigurable manu-
facturing systems (Wu et al. 2015).

One of the most common aspects in the cloud manufactur-
ing frameworks presented in the literature is the use of sen-
sors to gather information from the physical manufacturing
system and intelligent algorithms for data processing to pro-
vide services supporting different manufacturing tasks.

Mourtzis et al. (2016a) developed a cloud approach to
realise condition-based preventive maintenance of machine
tools and equipment based on the use of advanced monitor-
ing techniques. In this approach, the cloud-based software
service collects and processes in near-real-time data on the
status of the machine tools and their actual operating time
and estimates the remaining useful life of components.

Tapoglou et al. (2015) presented a cloud-based approach
for dispatching jobs to the available computer numerical con-
trol (CNC) machines and creating the optimum machining
code based on relevant information acquired on the shop
floor. The approach is based on the use of a sensor network,
information fusion technique and data communication
through the Internet to a cloud-based platform.

In Mourtzis et al. (2016b), an approach for cloud-based
adaptive process planning taking into account availability
and capabilities of machine tools is proposed. A service-
oriented cloud-based software framework gathers data from
shop-floor machine tools through sensors, input from opera-
tors and machine schedules and through information fusion
technique provided to the process planning service processed
data on the status, specifications and availability time win-
dows of machine tools.

Wang (2013) developed a web-based service-oriented sys-
tem for distributed machining process planning in a decen-
tralised and dynamic manufacturing environment. Real-time
monitoring of machine availability and web-based user inter-
face allow adaptive decision-making capability even in the
case of unpredictable shop-floor changes and network-wide
accessibility to manufacturing services.

Wang et al. (2016) proposed a cloud-based framework for
prognosis of machine degradation and failure propagation to
support preventative maintenance scheduling.

In Wu et al. (2016a), an approach for predictive mainte-
nance through the parallel implementation of machine learn-
ing algorithms on the cloud is developed, while in Wu et al.
(2016b), a fog-enabled architecture consisting of smart sensor
networks, communication protocols, parallel machine learning
and private and public clouds for automatic failure detection
and preventative maintenance scheduling is proposed.

Gao et al. (2015) presented the concept of cloud-enabled
prognosis as an innovative service-oriented technology sup-
porting prognostic services for manufacturing over the
Internet. In this framework, machine condition monitoring is
realised by collecting data remotely and dynamically on the
shop floor via sensors and data acquisition systems; based on
these acquired records, remote data analysis and degradation
root-cause diagnosis and prognosis are performed. The result
of the prognostic service is used as the basis for preventive
maintenance planning.

Beyond the specific target of machine condition monitor-
ing, the wider field of manufacturing process monitoring
could benefit from the implementation of cloud manufactur-
ing for further scopes including monitoring of tool conditions,
chip form, process parameters, surface integrity, chatter detec-
tion, etc.

However, as regards TCM, which is a major issue in manu-
facturing process monitoring, a significant lack of cloud-based
applications/frameworks proposed in the literature is verified.
The work reported in the present paper contributes to filling
the current cloud manufacturing research gap related to the
development of a new cloud-based control platform aimed at
service-oriented provision of online smart diagnosis and auto-
mation functionalities for TCM in machining.

Cloud-enabled diagnosis in online TCM can provide sev-
eral benefits compared to traditional TCM methodologies.
Data are remotely and dynamically gathered on the shop
floor via sensors and data acquisition systems while data
analysis can be performed in remote, where expert know-
how can be made available and shared in the cloud, realis-
ing the knowledge base referenced on-demand by users
through the Internet. Improved accessibility and robustness
are achieved by offering modular and configurable diagnos-
tic services that can be selected from the cloud when
necessary or applicable in the form of pay-as-you-go ser-
vices. Improved computational efficiency and data storage
are allowed by the higher speed characterising cloud-
enabled computation via parallel computing. Collaboration
and distribution are enhanced as diagnosis is offered as a
remote service instead of a local, centralised function.
Information sharing and fusion realised by crowdsourcing
allow to improve data interpretation and robustness (Gao
et al. 2015).

3. Advantages of cloud-based smart TCM in
manufacturing processes

The aim of this research work is to develop a cloud manufac-
turing framework to provide smart TCM services, realised
through the combination of real-time cloud-enabled diagnosis
based on sensor monitoring and cognitive decision-making
procedures.
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The development of smart monitoring procedures in man-
ufacturing can significantly increase productivity and reduce
production costs, enhance the performance of manufacturing
processes in the perspective of zero defect manufacturing and
support the reliable automation of manufacturing systems via
smart system adaptation (Teti 2015; Wang and Gao 2006).

Monitoring of manufacturing processes has several scopes.
This work is developed with particular reference to TCM, which
is a critical issue, especially when machining difficult-to-cut mate-
rials such as those employed in aeronautical and aerospace appli-
cations, due to the rapid development of tool wear and the
unpredictable occurrence of CTF (Jemielniak et al. 2012; Teti
et al. 2010).

The availability of real-time diagnosis on tool conditions may
allow to optimise tool life by implementing smart strategies such
as condition-based tool replacement (i.e. by replacing cutting
tools only when they are close to the end of life) instead of
conservative time-based tool replacement (in which the cutting
tool is replaced after a predetermined time independently of its
real wear conditions). In this way, it is possible to decrease the
tooling costs and reduce the risk of damages to the machine and
workpiece, e.g. by allowing fast reaction when a tool breakage
occurs.

TCM has been extensively studied by many researchers
since the late 1980s (Teti et al. 2010). The majority of TCM
research to date has been focused on widespread machining
processes such as turning, drilling, milling and grinding, but
also less frequent machining processes such as broaching
were investigated (Boud and Gindy, 2008).

The typical TCM system operates according to the following
procedure: selected process variables (e.g. cutting forces, vibra-
tion and acoustic emission) are measured by the application of
appropriate physical sensors; the detected signals are subjected
to analogue and digital signal conditioning and processing with
the aim to generate functional signal features relevant to the tool
condition. The TCM is based on these features (Teti et al. 2010;
Teti 2015; Jemielniak and Arrazola 2008; Jemielniak et al. 2012;
Boud and Gindy 2008; Wang et al. 2014). In a smart monitoring
system, the sensor signal features are then fed to and evaluated
by cognitive decision-making support systems based on pattern
recognition techniques for the final diagnosis that can be used to
suggest or execute appropriate adaptive/corrective actions (Teti
et al. 2010; Teti 2015; Kunpeng, San, and Soon 2009).

Many of the TCM approaches presented in the literature
employ multiple sensors and advanced signal processing tech-
niques that require the local availability of high-level compu-
tational resources, storage capability, interoperability and user
skills (Teti et al. 2010; Teti 2015; Jemielniak and Arrazola 2008;
Jemielniak et al. 2012; Boud and Gindy 2008; Wang et al.
2014). Such requirements may represent barriers to the online
implementation of such approaches in industry.

Hence, the possibility to realise the remote and timely
acquisition, distribution and utilisation of data from manufac-
turing processes is extremely interesting for the realisation of
innovative monitoring procedures (Monostori et al. 2016).

In this direction, the new paradigms such as Industry 4.0,
Internet of Things and cloud manufacturing represent key
enablers to overcome the traditional barriers of TCM applica-
tions and achieve objectives such as increased use of sensors,

interoperability, cloud-hosted analysis and wider technology
acceptance by operators (Byrne et al. 2016).

The implementation of a cloud manufacturing framework
proposed in the present paper represents a remarkable
advancement for smart process monitoring, allowing to
exploit the cloud capabilities in order to offer real-time diag-
nosis on tool conditions according to a service-oriented
approach. Introducing sensors and networked communication
into the factory strongly supports smart in-process diagnosis
as well as the timely activation of adaptive actions based on
actual process conditions (Gao et al. 2015). These actions
include human interventions and proper commands directly
fed to the machine tool numerical control, improving the
robustness and adaptability of processes and systems.

According to the proposed cloud manufacturing-based mon-
itoring framework, the computing and service resources in the
cloud are connected to the physical production devices (i.e.
machine tools and sensor systems) realising a complex CPS
(Wang et al. 2014; Monostori 2014; Wang, Torngren, and Onori
2015).

The cloud server receives the preprocessed sensorial data
acquired by a multiple sensor system mounted on the
machine tool and provides services consisting in the diagnosis
on tool conditions related to the detection of tool failure
events through a knowledge-based approach as well as to
the estimation of tool life through a neural network (NN)-
based cognitive paradigm using features extracted from the
acquired sensorial data (Teti 2015).

The diagnosis on tool conditions benefits from the cloud
infrastructure in terms of enhanced computational capability,
which improves the execution efficiency of the diagnosis and
enables more robust decision-making due to large information
and knowledge sharing available in the cloud (Gao et al. 2015).

Based on the diagnosis on tool conditions provided by the
cloud service, it is possible to locally select and automatically
activate proper actions at factory level, such as emergency
process halting, tool replacement or parameters’ change.

4. Architecture of the cloud-based framework for
manufacturing process monitoring

The cloud-based manufacturing process monitoring framework
developed to realise online smart diagnosis is based on the
architecture shown in Figure 1. The computing and service
resources in the cloud are connected to the physical resources
(machine tool and sensor system) realising a complex CPS, which
can be defined as a ‘physical and engineered system whose
operations are monitored, coordinated, controlled and integrated
by a computing and communication core’ (Rajkumar et al. 2010).

The cloud manufacturing architecture is structured in three
layers corresponding to:

® Physical resources
® | ocal server
® Cloud server

This structure allows to share the computational effort
between different resources, which can be geographically dis-
tributed and managed by diverse actors with different
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Figure 1. Architecture of the cloud-based cyber-physical system for smart monitoring of machining processes.

competences and acting at different levels. In this way, while
exploiting the different skills of each actor involved, network
communication allows to overcome the traditional distance
between office floor and shop floor and to share their results
and information.

The physical resources and the local server are both
included in the Factory Network, representing the hardware
and software resources available within the production sys-
tem. On the other hand, the cloud service is Internet based
and can be potentially connected inside the boundary of the
manufacturing company (private cloud) or outside that
boundary (public cloud, requiring higher protection of data).
Different methods can be adopted to connect machines, local
server and provider cloud, and they must be selected based
on stability, speed, distance coverage and security. Within the
factory environment, local area network (LAN) is preferable to
Wi-Fi and Bluetooth. Moreover, communication beyond the
boundary of the manufacturing company often implies great
distances to be covered and requires the availability of con-
nections of LANs with high security and time performance.
Tactile Internet, characterised by very low latency (<1 ms) in
combination with high availability, reliability and security,
represents a key target to fulfil the communication require-
ments of cloud manufacturing (Neugebauer 2016).

By examining the three-layer structure of the proposed
cloud manufacturing architecture, at the physical layer, the
CNC machine tool employed to perform the machining pro-
cess must be equipped with a multi-sensor system to collect in
real time various sensor signals containing valuable informa-
tion on process conditions. Reliable sensor monitoring of

machining processes requires the employment of a multiple
sensor system to overcome the limitations of a single sensor
and to realise the sensor fusion technology to integrate infor-
mation from several sensors of different nature in order to
improve the quality and robustness of the process character-
isation (Teti et al. 2010; Teti 2015).

The system is employed to collect in real time during
machining multiple sensor signals that contain relevant infor-
mation to use as input for the diagnosis on tool conditions.

The computing tasks related to sensor signal preprocessing
are assigned to the local server. To support high computing
power, the local machine works as data buffer and prepro-
cesses the data into stand-alone data packages (sensor signal
segments) which are sent to the cloud over the network (Gao
et al. 2015).

The cloud computing capability is employed to rapidly
perform online diagnostic tasks, and the potentially huge
cloud database is used to maintain and share relevant infor-
mation and knowledge that can support further cloud
services.

The cloud server receives the preprocessed sensor signal
segments, carries out the extraction of relevant signal features
and performs the required diagnosis on tool conditions,
detecting faults such as CTF through a knowledge-based
approach, as well as estimating consumed tool life through
cognitive pattern recognition paradigms. After the computing
task is completed, the cloud sends back the diagnostic output
to the local server, which utilises the diagnosis result as input
and reference for decision-making on corrective actions. Based
on the cloud diagnosis on tool conditions, the local server may
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select actions such as tool replacement, process halting or
parameters change and send the necessary commands
directly to the CNC machine tool control. Any corrective action
is displayed on the local terminal for visualisation by the
operator, and proper warning is displayed in case human
intervention is required.

5. Development of the cloud-based framework in
turning of difficult-to-machine materials

The presented cloud-based manufacturing process monitoring
framework for smart diagnosis may be virtually employed for
any machining process, by properly adapting the multi-sensor
system, the signal processing procedures and the cognitive
algorithms for the diagnosis on process conditions based on
the specific process involved.

In this paper, the proposed framework for cloud-based
manufacturing process monitoring has been developed with
particular reference to the application in turning of difficult-to-
machine materials, where a prompt diagnosis on tool condi-
tions may determine a significant process improvement.

The cloud server proposed in the cloud-based framework
for smart diagnosis provides for knowledge-based algorithms
and cognitive paradigms able to make a diagnosis on tool
conditions based on the acquired sensorial data.

The development of the methodologies for the smart
diagnosis on tool conditions requires the creation of a
comprehensive training set: therefore, experimental data
have been collected through a preliminary experimental
campaign of turning of difficult-to-machine materials such
as titanium alloys.

When turning these materials, rapid tool wear occurs since
most of the heat generated during machining is conducted
into the tool, and unpredictable CTF may occur during the
process due to the extremely low machinability. The degrada-
tion and failure of the cutting tool have adverse effects on
accuracy and surface finish of machined parts and significantly
contribute to scrap generation.

Therefore, the development of smart diagnosis procedures
supported by cloud technologies could lead to significant
improvements in terms of scrap reduction, rework and inspec-
tion costs, tooling costs, machine and workpiece safety and
process robustness and would reduce down time related to
maintenance and tool replacement operations.

5.1. Physical resources: multi-sensor monitoring system

By examining the three-layer structure of the proposed cloud
manufacturing architecture (Figure 1), at the physical level, a
multi-sensor system is mounted on the CNC machine tool.
The selection of the most adequate sensors depends on the
specific machining process and the monitoring scope: the
most commonly utilised sensors for online measurement dur-
ing machining include force, torque, power, acoustic emission,
vibration and temperature sensors. In the specific case of
turning of difficult-to-machine materials, the smart diagnosis
is based on the employment of a multiple sensor system
comprising a triaxial force sensor, an acoustic emission sensor
and a vibration sensor mounted in the proximity of the tool,

Figure 2. Multiple sensor monitoring system for smart monitoring of turning
processes.

with the aim to capture useful information for TCM. In
Figure 2, the lathe-mounted multiple sensor system for turn-
ing process monitoring is shown.

6. Local server

The local server in the middle layer is installed and configured
to carry out the preprocessing of signals coming from the
multiple sensor system and send the preprocessed sensor
signal segments to the cloud service.

Preprocessing of signals coming from the multiple sensor
system for TCM involves signal filtering, amplification, A/D con-
version and segmentation. The analogue sensor signals are ampli-
fied and then digitised through an acquisition board at a sampling
rate of 10 kS/s. Only the relevant part of the signals acquired
during machining is taken into further consideration, removing
air cut or transient conditions (Teti et al. 2010; Teti 2015).

The preprocessed and segmented signals are buffered by
the local server and delivered via Internet protocols to the on-
demand web-based cloud service system according to the
needs of the cloud sensor monitoring procedure. The data
buffer length may be different depending on the require-
ments of the specific algorithm to which the signal segments
are inputted. For a fixed-signal sampling rate, the shorter the
data buffer, the highest the frequency of the diagnosis loop
will be, with consequent faster manufacturing system reaction
time. On the other hand, when choosing the data buffer
length, concerns regarding the algorithm processing time
and the amount of relevant information included in the data
buffer for the monitoring scope should be taken into account,
and a sufficiently long buffer length should be selected.

When the cloud server completes the diagnosis on tool
conditions and forwards it to the local server, the latter selects
the proper corrective action to be taken based on the cloud
server diagnosis output as well as on the specifications about
processes, tools and work materials stored in the local database.

Corrective actions may include process halting, tool repla-
cement or parameters’ change: the proper command, such as
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process halting or parameters’ change, is directly sent from
the local server to the CNC control. Moreover, the selected
action can be visualised on the local terminal to make the user
aware of the control actions taken automatically by the local
server. In the case of tool replacement, the local terminal
displays a warning to the operator with the instruction to
replace the tool.

6.1. Communication between local server and cloud
server

The cloud-based diagnosis function is offered as a web service
application hosted on a web server accessed through the
network. As regards the communication between client and
cloud server, the Hyper Text Transfer Protocol (HTTP), which is
a widespread protocol for web-based applications, has been
selected for data transmission.

In this way, the web service can be invoked with any HTTP-
capable web client, application-to-application data exchange
can be easily carried out and remote monitoring and control
can be performed.

To secure the network data exchange, Transport Layer
Security cryptographic protocol, upgrade of Secure Sockets
Layer, is adopted to provide privacy and data integrity
between communicating parties. In this way, the connection
is private (or secure), the identity of the communicating par-
ties can be authenticated and connection integrity is ensured
using a message authentication code to prevent undetected
loss or alteration of the data during transmission. These secur-
ity-related features are particularly critical in the cloud manu-
facturing framework to protect the exchanged data against
misuse and unauthorised access, ensure transmitted data
integrity and prevent data losses that would cause serious
production damages.

HTTP as communication protocol has been adopted in
various cloud manufacturing frameworks, including those pre-
sented by Mourtzis et al. (2016a) and (2016b), Tapoglou et al.
(2015) and Wang et al. (2011).

In the literature, there are current efforts to develop server-
oriented architectures using different web services standards
providing greater interoperability and security for CPS
(Morgan and O'Donnel 2015). Moreover, innovative open stan-
dards and communication protocols, in particular for what
concerns machine-to-machine communication and interoper-
ability, have been recently proposed and are still under devel-
opment (MTConnect Institute, n.d.; Wu et al. 2013b). In the
future, new communication protocols could allow for faster
and easier communication of manufacturing facilities and
applications through the Internet.

7. Cloud server

The cloud server provides for knowledge-based algorithms
and cognitive paradigms able to make a diagnosis on tool
conditions based on the acquired sensorial data. This is
offered as a web service application hosted on a web server
accessed through the network via HTTP protocol.

The developed cloud manufacturing framework takes
advantage of the cloud capabilities by outsourcing the

activities for advanced signal processing and cognitive deci-
sion-making. The cloud service consists of four parts. The first
part carries out advanced signal processing on the prepro-
cessed sensor signal segments in order to extract and select
relevant sensorial features for TCM. The latter are utilised in
two different modules: the first module is employed to detect
the occurrence of a CTF through a knowledge-based algo-
rithm, whereas the second module is utilised to estimate
consumed tool life through an NN-based pattern recognition
approach.

In this way, the cloud is able to provide online diagnostic
services. The output diagnosis on tool conditions is sent back
to the local server which can determine the proper actions to
be taken such as tool replacement, process parameters’ varia-
tion or emergency halting.

7.1. Feature extraction and selection procedure

The extraction of relevant features related to the tool and/or
process conditions from the acquired sensor signals is a key
issue in machining monitoring systems (Teti et al. 2010).
Several methodologies for sensor signal feature extraction
are available, based on signal representations both in the
time domain and in the frequency domain (Teti 2015).

In this cloud manufacturing framework, sensor signal fea-
tures maintaining the relevant information about the process
will be extracted in the time domain and in the time—fre-
quency domain from the preprocessed sensorial data coming
from the local server.

The methodology for the diagnosis on CTF is based on the
extraction of statistical features from the sensor signals in the
time domain, whereas the methodology for the diagnosis of
consumed tool life is based on sensor signal features extracted
in the time-frequency domain through Wavelet Packet
Transform (WPT) (Teti et al. 2010; Teti 2015).

Feature selection is then carried out to select only the
relevant features that can be correlated to the tool conditions.
As a matter of fact, although a sensor signal may be charac-
terised by many diverse representative features, not all of
them are useful for the specific monitoring purpose (Teti
et al. 2010; Teti 2015).

Moreover, direct fusion paradigms (i.e. fusion of sensor data
from heterogeneous sensors) and/or indirect fusion paradigms
(i.e. using other information sources such as machine process
specifications) are applied (Teti et al. 2010; Teti 2015; Segreto,
Simeone, and Teti 2013).

7.2. Knowledge-based CTF detection methodology

The first module for the diagnosis of tool conditions is focused
on identifying the occurrence of CTF through a knowledge-
based detection algorithm.

A CTF is an unpredictable fracture of the cutting edge, e.g.
through brittle failure, and might cause substantial damages
to the workpiece and/or the machine tool. Therefore, the
ability for online detection of a CTF event during machining
and the prompt halting of the process are essential to reduce
workpiece scraps and machine downtime with positive effects
on product quality and cost.
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In the literature, some methodologies to detect the occur-
rence of CTF have been proposed with particular reference to
turning processes (Kim and Choi 1996; Jemielniak et al.
1998a; Jemielniak et al. 1998b; Balsamo et al. 2016). The
procedure employed in this cloud manufacturing framework
is based on sensor signal acquisition of the three compo-
nents of the cutting force (Fx, Fy and Fz) during machining,
following previous results reported in Balsamo et al. (2016).
The methodology is based on the extraction of relevant
signal features from signal segments corresponding to
10 ms of machining, consisting of 100 samplings at sampling
frequency of 10 kS/s: below this time window, the CTF pro-
cedure proved not to be sufficiently reliable. With the aim to
speed up the CTF diagnosis, instead of considering consecu-
tive signal segments of 100 samplings each, a moving win-
dow with a total length of 100 samplings and a step of 20
samplings is considered. Signal segments of 100 samplings
are constructed by shifting forward of 20 samplings at a time:
at each run, 20 new samplings are collected and added to
the signal segment, and the oldest 20 samplings are removed
from the signal segment.

Therefore, at each step, very small signal segments, corre-
sponding to 2 ms of machining, are sequentially processed
and collected into larger signal segments corresponding to
10 ms of machining to extract selected signal features (e.g.
signal mean, variance and max-min range) useful for CTF
event identification: these features are input to a knowledge-

based algorithm that compares the feature values with pre-
viously specified thresholds for CTF detection.

The logic scheme of the knowledge-based CTF detection
procedure is shown in Figure 3. The CTF detection algorithm
receives in input the sensor signal segments as well as the
specifications concerning the machining process, the tool and
the work material. These data allow to identify the proper
procedure for CTF detection and the values of the thresholds
for the specific process conditions.

The sensor signal arrays containing 20 samplings of each
signal are sequentially buffered and delivered in input to the
CTF detection algorithm; for a sampling frequency of 10 kS/s,
the 20 signal samplings correspond to 2 ms of cutting time.
Therefore, the frequency of the CTF diagnosis loop is equal to
500 times/s, which means that the CTF detection algorithm
must take a time <2 ms.

The output of the knowledge-based CTF detection algo-
rithm is a Boolean variable, where true means that a CTF event
is detected. In the ‘true’ case, the CTF signal is fed to the local
server that sends an emergency process halting command to
the machine tool control.

Therefore, the time between the CTF event and the actual
feed stop of the process, to, is given by the sum of the time
for signal processing, t,p, the time for processed signal delivery
to the cloud server, t., the time for the CTF detection diag-
nosis, tyg, the time to transmit the CTF alert signal from the
cloud server to the local server, t, the time to deliver an

Local level
Start process
Machining process
specifications
Tools Sensor signal
specifications acquisition
Workmaterial and preprocessing

specifications

\ 2 ms signal segment

Cloud level

Signal feature
extraction

Extracted featuresl

Knowledge-based
algorithm for CTF
detection

Local level

occurring

!

CTF

CTF diagnosis loop

Boolean variable: 0 = False, 1 = True

Control action:
process halting

Figure 3. Workflow for online knowledge-based CTF detection procedure.
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emergency stop command to the machine tool control, te,
and the time required to stop the feed drive, tiy, which
depends on the machine tool hardware and software.

tiot = tsp + tes + tag + tis + tes + trg

where:

tsp: equal to 2 ms

tyq: Maximum duration 2 ms

tes: local communication <1 ms

trg: can be assumed approximately equal to 50 ms, depend-
ing on the machine tool reaction time

t.s and ti;: given by the Internet signal data transmission
delay, i.e. the latency time which is variable in the range
1-100 ms, depending on the device and the protocol used
for connection as well as the distance to be travelled
(Neugebauer 2016; Morgan and O’Donnell 2015).

The Internet bandwidth available in contemporary shop
floors does not yet allow for latency times as low as 1 ms.
However, significant efforts are made today to achieve high-
speed communication with extremely low latency times (lower
than 1 ms) attaining the so-called ‘tactile Internet’ (Neugebauer
2016). Under these conditions, t,; can be reduced to as low as
60 ms or lower (Morgan and O’Donnell 2015).

The described methodology allows to realise a prompt
identification of CTF occurrence during machining and, if the
factory infrastructure is sufficiently fast, a quick reaction of the
system that immediately stops the machining process.

7.3. NN-based tool wear pattern recognition procedure

The second cloud service module is dedicated to the diagnosis
on consumed tool life through an artificial NN-based pattern
recognition procedure.

The knowledge-based NN paradigm requires the creation
of a comprehensive training set through a preliminary experi-
mental campaign. The training set for NN machine learning
consists of couples of input feature vectors and corresponding
output quality parameter values. The elements of each input
feature vector are given by the features extracted from the
sensor signals in the time-frequency domain, and the output
quality parameter value is the corresponding tool flank wear
level. By setting a maximum acceptable flank wear level (e.g.
VB = 0.3 mm) as the criterion for end of tool life, the tool flank
wear level can be expressed as percentage of consumed tool
life (100% corresponds to end of tool life).

The proposed feed-forward backpropagation NN architec-
ture is characterised by three layers: the input layer with a
number of input nodes equal to the number of selected
sensor features, the hidden layer with a number of hidden
nodes related to the number of input nodes and the output
layer containing only one node providing the percentage of
consumed tool life.

The Levenberg-Marquardt trained and tested NN is
employed by the cloud manufacturing server to provide a
diagnosis output in terms of estimated percentage of con-
sumed tool life based on the input characteristic features
extracted from the acquired sensor monitoring signals.

Figure 4 describes the NN-based consumed tool life diag-
nosis procedure.

The latter is based on sensor signal acquisition of the three
components of the cutting force (F,, F, and F,), the acoustic
emission RMS (AEgys) and the vibration during machining. The
minimum time interval of sensor signal acquisition for relevant
feature extraction in this case is equal to 1 s; therefore, the
data buffer length is higher than in the CTF detection algo-
rithm. Accordingly, sensor signal segments, corresponding to
1 s of machining time, are sequentially buffered at the local
level and delivered to the cloud for the extraction of relevant
signal features. Feature extraction and selection is performed
by the cloud server in the time—frequency domain via the WPT
method (Teti et al. 2010; Teti 2015).

The WPT provides level by level transformation of a signal
from the time domain into the frequency domain. Starting
from the first level, the original signal S is split into two
frequency band packets called approximation, A, and detail,
D. The process is repeated in the next levels generating other
decomposition packets. The top level of the tree is the time
representation of the signal, while the subsequent levels are
characterised by an increase in the trade-off between time and
frequency resolution. The bottom level of a fully decomposed
tree is the frequency representation of the signal.

In the tool life diagnosis module, WPT using Daubechies
db02 mother wavelet and three-level decomposition is
applied. For every packet, several statistical features, i.e.
mean, variance, skewness, kurtosis and energy, are calculated,
and only the signal features that during training result more
correlated to the consumed tool life are selected for NN input.

The extracted and selected features are fed as input to the
NN paradigm for tool life pattern recognition, together with
the specifications on machining process, tool and workpiece
material coming from the local server.

These specifications, provided via Internet by the local
server, allow to identify the correct NN trained with the appro-
priate set of sensorial features and related output quality
values. When machining starts, the relevant NN is identified
and the tool life diagnosis algorithm is started.

The frequency of the tool life diagnosis loop is equal to 1
time/s, which means that the NN tool life pattern recognition
paradigm must take a time <1 s.

The output of the NN tool life diagnosis paradigm is a
percentage value representing the estimated portion of con-
sumed tool life. If this value is <100%, the subsequent 1 s
signal segment is processed and the NN loop is repeated. For
each 1 s of machining, the extracted sensorial features are
coupled with the estimated consumed tool life obtained by
the NN, and these data are stored sequentially in a buffer.

This process is repeated till the estimated consumed tool
life reaches 100%, i.e. when the maximum acceptable tool
wear level is reached and the tool must be replaced. When
this condition is attained, the diagnosis output is fed to the
local server, which sends an emergency halting command to
the CNC control in order to interrupt the machining process.
Moreover, the local server sends an alarm to the local terminal,
where the operator can visualise a warning with the indication
that the threshold of 100% consumed tool life has been
reached and the advice to replace the tool.
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Figure 4. Workflow of the NN-based consumed tool life diagnosis procedure.

Meanwhile, the initial data set used for training the initial
NN is modified. The new tool life set is added to the data set
for NN retraining using the expanded training set. However,
the new tool life set addition is conditioned by the metrolo-
gical verification that the final flank wear value of the tool is in
actual agreement with the predicted value within an accepta-
ble tolerance range.

The time between the attainment of the 100% consumed
tool life and the actual feed stop in the process, t, is longer
than in the CTF detection case and can be estimated around
2 s because the tool life diagnosis loop works on signal seg-
ments of 1 s duration. However, this higher value of t;, is still
amply acceptable to stop the process for tool replacement,
without actual risk for the workpiece quality and integrity.

8. Cloud framework users and local terminal

Three types of user groups, with different roles and knowl-
edge degrees, and therefore different access levels to relevant
information, have been identified in the cloud-based frame-
work for smart diagnosis: administrator, supervisor and
operator.

The administrator is responsible for the configuration of the
sensor monitoring system, in terms of both hardware and
software, and for the database management, and should
have access to all the functionalities of the cloud-based pro-
cess monitoring system. The supervisor, on the other hand, is
responsible for process design and tool selection and should
observe the process monitoring statistics and diagnosis results

to verify the need to modify products and tools or to retrain
the cognitive knowledge-based paradigms for tool condition
diagnosis. At a lower level, with more limited access to infor-
mation, the operator is the one directly acting on the physical
machine tool, in charge of performing machine start/stop and
tool replacement; he should check if tool replacement is
required based on the cloud diagnosis results and observe
the system performance to point out maintenance needs.

The local terminal should provide the proper interface to
each of the different users defined above following their
specific access authentication. As an example, the administra-
tor should get into all the functionalities related to the sensor
system configuration and testing, the cognitive knowledge-
based paradigms for diagnosis, etc. The supervisor, on the
other hand, should be able to get access to the functionalities
related to process design and tool selection and should be
able to observe the status of the machining process and the
cloud diagnosis results to monitor the process and verify the
well functioning of the cloud-based smart diagnosis system.

At the operator level, the local interface should allow to
monitor the machining process status, to visualise a warning
concerning the need to change the tool or the occurrence of a
CTF and to input information related to manually performed
actions such as tool replacement, product change, etc.

Through separate remote terminals connected to the
cloud, diverse users dislocated in distinct sites and with differ-
ent skills may access the same information on the TCM diag-
nosis and the process performance statistics carried out by the
cloud server.
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Moreover, by extending the monitoring system to multiple
machines and processes, the same user could access data related
to different machines and processes at the same time and on the
same terminal. As an example, a single operator may supervise
multiple processes all together and have a unique portable
terminal where the status of several machines can be accessed.

The local terminal interface provided to the local users such
as the operators to monitor the machining process status is
described in more details the following section.

8.1. Local terminal interface for machining process
status monitoring

The local terminal provides an interface to the local users to
monitor the machining process status, displaying the cloud
diagnosis results, the control actions activated by the local
server and the proper alert when human intervention is
needed, such as in the case of tool replacement.

The local interface shows the following information:

® Machine tool - ID of the machine tool on which the
sensor system is installed

® Workpiece — ID of the workpiece under machining

® Machining parameters — cutting speed, feed rate and
depth of cut

® Tool - ID of the tool used for machining

® Status — graph illustrating changes in process state (on/
off of working feed, detected cutting process and CTF
alarms)

® Signal - ID of the selected sensor signal (e.g. 1 = x-axis
force component, 2 = y-axis force component, etc.)

® Diagnostic signal — graph visualising the selected signal

® TCM results — operation number, tool ID and estimated
consumed tool life in percent

® Selected control action - process halting, tool replace-
ment requisite and parameters change

The TCM results are displayed in two ways: CTF detection is
illustrated in the status diagram (red line), whereas the

subsequent indications of estimated consumed tool life (in
%) are shown in the TCM results array together with operation
numbers and tool numbers (Figure 5).

9. Conclusions

A cloud manufacturing framework to provide smart diagnosis
services for online manufacturing process monitoring was
developed with the aim to perform TCM. The major advantage
of the cloud-based approach is the enhanced computation
and data storage capabilities, available from distributed
resources, which, compared to traditional TCM approaches,
can greatly improve tool condition diagnosis efficiency and
enable more robust decision-making by exploiting large infor-
mation accessibility and knowledge sharing.

Diagnosis on consumed tool life and tool breakage occur-
rence is offered as cloud services, using an architecture where
the computing and service resources in the cloud are con-
nected to the machine tool, realising a complex CPS.

The cloud manufacturing server offers a prompt online
diagnosis on tool conditions, based on sensorial data acquired
at factory level, through knowledge-based algorithms and
cognitive pattern recognition paradigms. Grounded on cloud
diagnosis, the local server activates the proper corrective
action, such as tool replacement, process halting or para-
meters’ change, sending the right command to the machine
tool control.

The CTF diagnosis loop is performed every 2 ms and the
consumed tool life diagnosis loop every 1 s, allowing a quick
system reaction to immediately halt the machining or modify
the process parameters to increase tool life.

With a suitable Internet infrastructure in the production
environment, the time between the CTF event and the actual
feed stop was estimated as low as 60 ms, whereas the time
between achievement of 100% consumed tool life and actual
feed stop was around 2 s. These times can be further reduced
through superior infrastructure availability and new data com-
munication methods, which are open challenges today. As a
matter of fact, one limitation to the real-time application of
the cloud-based monitoring of machining processes is related
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to the time delay between an event and the actual feed stop,
which critically depends on several time factors, such as
latency of Internet communication as well as reaction time
of machine tools. Enhanced control systems allowing for very
high-speed reaction times to control commands, together
with tactile Internet, characterised by low latency in combina-
tion with high availability, reliability and security, represent
key targets to fulfil the time requirements of cloud
manufacturing.

As regards near to medium-term future developments, the
cloud monitoring service could be extended to several
machines and machining processes, allowing to represent
the status of the entire manufacturing system where CPS
monitor physical processes and communicate and cooperate
with each other. In this way, a single operator may supervise
multiple processes simultaneously and have a unique portable
terminal where the status of several machines can be
accessed.

As concerns a more long-term outlook, information from
data collected by the monitoring system, such as statistics of
sensor signals, consumed tool life, tool failures and emergency
stops, could be collectively made available in the cloud in
order to create a knowledge base on tool conditions that
could reinforce tool maintenance and tool management activ-
ities in supply networks: e.g. the correct estimation of the
expected number of tools required for the planned processes
could allow for procurement procedures to be triggered pre-
cisely when needed in the supply chain.
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