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ABSTRACT | Much has been published about potential bene-

fits of the adoption of cyber–physical systems (CPSs) in

manufacturing industry. However, less has been said about

how such automation systems might be effectively configured

and supported through their lifecycles and how application

modeling, visualization, and reuse of such systems might be

best achieved. It is vitally important to be able to incorporate

support for engineering best practice while at the same time

exploiting the potential that CPS has to offer in an automa-

tion systems setting. This paper considers the industrial con-

text for the engineering of CPS. It reviews engineering

approaches that have been proposed or adopted to date in-

cluding Industry 4.0 and provides examples of engineering

methods and tools that are currently available. The paper

then focuses on the CPS engineering toolset being developed

by the Automation Systems Group (ASG) in the Warwick

Manufacturing Group (WMG), University of Warwick, Coventry,

U.K. and explains via an industrial case study how such a

component-based engineering toolset can support an inte-

grated approach to the virtual and physical engineering of

automation systems through their lifecycle via a method that

enables multiple vendors’ equipment to be effectively inte-

grated and provides support for the specification, validation,

and use of such systems across the supply chain, e.g., be-

tween end users and system integrators.
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I . INTRODUCTION

Cyber–physical systems (CPSs) are distributed, heteroge-

neous systems connected via networks, and usually asso-

ciated with the concept of the Internet of Things (IoT)

[1]. The increasing availability and use of distributed in-

dustrial CPS devices and systems could radically change

the nature of manufacturing and provide new opportuni-
ties to develop more effective, finer grained, and self-

configuring automation systems; the context for CPS in

this paper. A closely associated initiative is the Industry

4.0 platform, a specialization within the IoT and the

Internet of Services, it facilitates the vision of the smart

factory where CPSs monitor physical processes, create a

virtual copy of the physical world, and make decentra-

lized decisions [2].
Realizing CPSs for industrial automation implies the

need for engineering tools capable of supporting distrib-

uted systems and is coupled to a major shift in emphasis

from traditional monolithic, specialism-based, isolated

engineering tools and methods toward integrated, cloud-

based tool/system infrastructures based around an Inter-

net of Services and associated data. CPSs also imply a

combination of physical and virtual representations
where physical devices and functionality are represented

in data form and can be visualized virtually with the data

model maintained in correspondence to the physical sys-

tem throughout their lifecycle.

As noted by Aicher et al. [3], for many years the com-

plexity and the number of components in production au-

tomation systems have been increasing. Additionally, the
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size and complexity of the embedded software inside the
components are also increasing rapidly. Hence, the effort

and the cost for software engineering of production auto-

mation systems are consequently rising. Tools should

manage engineering complexity and are at the heart of

the engineering process. It is important to ensure that

current good practice and understanding of necessary en-

gineering workflows and functional capabilities can be

transferred and embodied into CPSs and that the re-
quired new tools and methods can support this.

Current automation systems engineering methods are

frequently criticized, e.g., for poorly supporting reuse

and their inability to effectively validate automation solu-

tions across supply chains. There is also poor integration

between real system and virtual system representations,

which need to be closely integrated throughout the auto-

mation system lifecycle from specification and design
through commissioning, validation, operation, and reuse

of systems.

Engineering tools traditionally have evolved to sup-

port the principle of “separation of concerns” to manage

engineering complexity. Therefore, tools are typically

vertically integrated with limited support (even inten-

tion) for horizontal integrability (i.e., integration across

disciplinary boundaries).

II . REVIEW OF CPS ENGINEERING
METHODS AND TOOLS

A. Utilization of Existing Tools and Standards
The majority of current tools are vendor specific and

support largely closed control environments. They gener-
ally offer good point-solution functionality, are well sup-

ported, and can deliver robust operational systems, be it

with limited agility.

In a CPS context it should be noted that within In-

dustry 4.0 the technical working group WG2 is studying

existing approaches and methods and has identified a se-

ries of usable, approaches. However as a rule these only

address partial aspects of the holistic view of Industry
4.0 [2]. For end-to-end engineering, AutomationML,

ProSTEP iViP, and eCl@ss were considered of most inter-

est; for communication, OPC-UA-based IEC 62541; in the

information layer, electronic device description (EDD)

and field device tool (FDT); and in the approach for im-

plementation of a functional and information layer, field

device integration (FDI) as the integration technology.

CPSs need to utilize and maintain compatibility with
traditional standards, where appropriate, and initiate the

definition of new ones where necessary. Significant stan-

dards from an engineering perspective include IEC62264

enterprise control system integration, ISA Draft 88/95

technical report, using ISA88 and ISA95 together, IEC

62890 lifecycle and value stream, IEC 62264/IEC 61512

hierarchy levels. The reference architecture model

RAMI4.0 has been put forward for standardization as

DIN SPEC 91345. See Fig. 1.

B. Component- and Model-Based Systems
An overview of architecture frameworks and model-

ing languages is introduced by Paredis et al. [4]. There
are many modeling approaches based on UML or SysML

[5]–[7]. In some of the literature, a module is defined
as a mechatronic component and the associated soft-

ware including parameters. An approach for modeling

mechatronic components structurally based on practical

experiences is introduced by Luder et al. [8]–[10]. The
approach was implemented with Siemens SIMATIC Au-

tomation Designer featuring the instantiation of parame-

ters based on a library of mechatronic components.

In a component- and model-based design flow, sys-
tem models are composed of component models guided

by architectural specifications, which may form a refer-

ence architecture defining system scope, content, and

composition. A reference architecture is a general

model that provides a framework for the structuring,

development, integration, and operation of the systems

[11]. For example, the Industry 4.0 Reference Architec-

ture model is very broad in that it aims to permit homo-
geneous consideration of the product to be manufactured

and the production facility, with their interdependencies.

The adoption of a component-based approach is at the

heart of the recently published RAMI reference model of

Industry 4.0, which features logically nestable compo-

nents [2].

Model-based design has a proven track record and

strong acceptance in many focused areas of engineering.
A range of approaches have been pursued to model-based

development; they may be descriptive and system inde-

pendent at the initial modeling stage, or be target-system

dependent from the outset [12]. Component-based devel-

opment has been proposed by various research groups to

increase flexibility and effectiveness of the development

process [13], [14]. Vogel-Heuser et al. have developed a

Fig. 1. Industry 4.0 reference architecture. Source ZVEI [2].
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nonformal methodology in the FAVA project for the sys-
tematic design of distributed automation systems in the

domain of manufacturing [15]. The authors of this paper

have also pioneered component-based systems founded

around a common model [16]–[20] and discussed in

Section III.

In the context of a component-based approach to

CPSs, an important goal is the adoption of higher value

design activities, e.g., the adoption of component- and
model-based design in order to lay the foundation for es-

tablishing well-defined interfaces between design and de-

ployment and across all lifecycle phases [21]. The appeal

of component-based design is the potentially large pro-

ductivity increase due to the reuse of design knowledge

captured by the component models used.

An industrial CPS might typically consist of many

components of widely varying scale and complexity, from
individual sensors and mechatronic devices to complex

control subsystems. The effective engineering of such in-

dustrial systems thus requires a new approach to enable

such components to be combined and logically config-

ured into evolvable automation systems whose behavior

can be well specified, implemented, and validated. The

many logical components (or objects) of such automation

systems may be clustered on some larger physical control
devices, e.g., programmable logic controller (PLC), or re-

side more individually on separate networked embedded

devices. These sets of control devices, large or small, are

networked together to form a CPS enabling new forms

of logical control interaction, information collection and

aggregation, and dynamic (re)configuration.

C. Component Programming and Deployment
Deployable CPS components (see Section III-C for

details on vueOne component model) may be engineered

in a range of forms. The engineering of distributed em-

bedded systems requires the modeling and support of

units of distributed functionality. A distributed system

can be described as a composition of interacting compo-

nents, such as function blocks or port-based objects,

which are mapped onto distributed devices [22].
As reported by Fay et al. [23], a distributed system

nodes, i.e., distributed components, may have different

properties. Each node allows either the execution of pa-

rameterized predefined functions (in the form of a set of

parameterized FBs) or free programming of control ap-

plications based on FBs, programming, and cyclic execu-

tion being based on the IEC61131 standard. Such

manufacturing automation system configurations are
widely used in the manufacturing industry [23]. This ap-

proach is also used by the authors in their vueOne sys-

tem where a state-based design method is adopted for

sequence and interlock behavioral definition and execu-

tion incorporating standard IEC 61131 notation. Note

that in vueOne where clusters of components are local

to a single physical node (e.g., on the same PLC) local

FB state arrays are used in a data-model-driven approach.
See Sections III and IV, with Section III-D providing an

outline definition of the component-based data-model-

driven approach and its runtime deployment.

Thus, systems design may be achieved directly in IEC

61131 (on a per component basis), via IEC 64199 or

through a higher level of abstraction. In the vueOne sys-

tem, the authors use a component-based system-level de-

sign environment. Component functionality is described
using state-transition diagrams for process and compo-

nent behaviors and through the propagation of states be-

tween components [16], [17], [24], [25]. IEC 61499 [26],

[27] promises significant advantages to users in terms of

simplicity of system level design and, more importantly,

the possibility of distributing control programs across dis-

tributed hardware and throughout the entire network,

but its utilization currently remains limited [26].

D. SOA Engineering Methods and CPS
Communications

CPSs involve highly networked system structures in-

corporating large numbers of human beings, IT systems,

and automation components. Industrial communication

systems, such as a suitable fieldbus or industrial Ether-

net, are available to establish communication among the
distributed components. In the vision of CPS every com-

ponent (be it for control, business, or engineering func-

tionality) is potentially able to interact with any other

component, as illustrated in Fig. 2 [28]. This enables a

strong horizontal and vertical integration within automa-

tion systems. For realizing such an automation network,

the question arises of how this communication is pro-

vided with high interoperability [29].
The factory of the future will be heavily based on In-

ternet and web technologies and as devices become able

to natively offer web services, they will provide an inter-

operability layer that leads to easier coupling with other

components despite of the high heterogeneity. Device

Fig. 2. Future distributed CPS functionality. The squares

represent input/output (I/O) devices, the lines service

interactions, and the circles distributed functionality. Source IoT

analytics [28].
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profile for web services (DPWS) [30], OPC-UA [31], and
representational state transfer (REST) are three of the

emerging technologies for realizing web service-enabled

device connectivity [32]–[34]. Such approaches are now

being heavily utilized in CPSs by the authors and many

other groups [35], [36].

The SOCRADES, SODA, and IMC-AESOP [37]–[39]

projects investigated taking web services down to the de-

vice level to enable improved horizontal and vertical
shop floor integration [22], [40]–[42]. It should also be

noted that a whole new range of critical security issues

arise in the context of communication for CPSs that are

beyond the scope of this paper [11].

E. Interoperability and Information Models
Data exchange among mechanical plant engineering,

electrical design, process engineering, process control
engineering, human–machine interface (HMI) develop-

ment, PLC programming, and other engineering tools is

currently difficult. Furthermore, from a lifecycle perspec-

tive, there are significant gaps in the consistent use of in-

formation throughout the lifecycle phases, and although

the concept of the smart factory is well understood where

consistency between physical and virtual representations

of production systems would be maintained at all lifecycle
phases, in reality a largely fragmented information model-

ing environment currently exists.

Prösser et al. [43] report that one of the main barriers

impeding the implementation of existing integration so-

lutions relates to the mutually diverse requirements of

the mechatronics disciplines involved. In order to over-

come these barriers, a middle-in data modeling strategy

to fulfil multidisciplinary requirements and to maintain
data model consistency is proposed. The approach has

been applied within the engineering design process con-

cerning body shop production lines at Audi.

AutomationML (AML) is a neutral data format based

on XML for the storage and exchange of plant engineer-

ing information modules, to interconnect heterogeneous

engineering tools from different fields, e.g., mechanical

plant engineering, electrical design, and PLC systems.
AML is essentially combination of existing standard data

formats for the storage of different aspects of engineering

information. For example, CAEX is used as the top level

format that connects the different data formats to com-

prise the plant topology, COLLADA is used for storage of

geometric and kinematic information, and PLCopen XML

serves for the storage of control logic. Following the pub-

lication of the AML standard IEC 62714, the implementa-
tion of a consistent engineering information model with

AML has to be verified [44]. Aicher reports on a project

where consistent verified engineering information has

been implemented using AML [3].

Biffl et al. [45] introduce a model-driven engineering

(MDE) approach for developing and providing versioning

and linking support for AML. The MDE process builds

on an AML metamodel to derive tool support 1) for rep-
resenting sets of local engineering results as data ele-

ments in AML files, 2) for extracting AML data elements

for versioning the local engineering results, and 3) for

linking the versioned local engineering results to an

AML tree representing the overall plant structure.

F. Simulation and Modeling for CPS
The concept of the virtual factory introduced by

Westkämper and Jendoubi continuously integrates data

from the real factory and in this respect is a predecessor

of CPSs [46]. The realization of this concept necessitates

the organization and coordination of interactions be-

tween virtual and real machines, plant control systems,

and production management systems [11].

There is currently no integrated tool chain that sup-

ports design and simulation of automation systems from
the first virtual prototype model to the fully functional

model. A wide range of computer-aided design (CAD)

tools supporting the various facets of the automation life-

cycle are however available from many vendors including

Siemens PLM and Delmia, e.g., supporting process plan-

ning, machine visualization, layout, and cycle-time as-

sessment [47], [48]. As reported by Oppelt et al. [49],
for a narrower scope, such as for virtual commissioning,
some effort is made to extend standards like Automa-

tionML with simulation-relevant information [50], [51].

Typical simulation and computer-aided engineering

(CAE) tools that enable engineers to virtually commis-

sion the control systems are WinMOD, Emulate3D,

TarakosVR, and Experior [52]. Hoffmann et al. reviewed
existing tool chains for virtual commissioning of

manufacturing systems [53].
In the context of the lifecycle of industrial CPS cosi-

mulation is likely to be significant. In cosimulation the

different subsystems which form a coupled problem are

modeled and simulated in a distributed manner [9], [49].

III . ASG CPS ENGINEERING
ENVIRONMENT: VUEONE

The ASG is focusing on the design and implementation

of automation systems engineering tools and methods,

aligned to the specific nature of CPSs, which can con-

tribute to achieving the goals of Industry 4.0. This is be-

ing achieved via the KDCM, Arrowhead, and

3Deployment projects.

The ASG’s research is delivering an engineering soft-

ware environment, called vueOne, part of which is cur-
rently being used to support Ford’s virtual engineering

activity in powertrain assembly in the United Kingdom.

vueOne is now also being applied to support the engineer-

ing of battery and electric motor make-like-production

systems in partnership with industry.

The vision of Kagermann et al. for Industry 4.0 is of

embedded manufacturing systems that are vertically
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networked with business processes within factories and
enterprises and horizontally connected to dispersed value

networks that can be managed in real time, and that

both enable and require end-to-end engineering across

the entire value chain [11]. Fulfilling this vision, from an

automation systems perspective, requires new engineer-

ing approaches and tools capable of enabling seamless

system design, implementation, and lifecycle support,

implicitly providing new levels of connectivity and data
visibility. In relation to this, the vueOne engineering en-

vironment is lifecycle based and aims to support the nec-

essary functionality and information interchange 1)

between lifecycle phases; 2) between the cyber and phys-

ical; and 3) between engineers across lifecycle phases

within and across organizations.

The vueOne environment is extendable so that mod-

ules can be progressively developed and added to the
framework. Regarding technology readiness, with refer-

ence to Fig. 4, the common data model and editing/

simulation tools exist at TRL 8, having been utilized by

the first commercial customers. The deployment and run-

time modules are at TRL 5 to 6, having been validated

and demonstrated industrially. The server infrastructure,

and fault and maintenance trackers are at TRL 4 applied

in small-scale prototypes, with other vueOne functional-
ity in development from TRL 3.

A. CPS Engineering Environment Framework
Fig. 3 provides a descriptive framework for introducing

the ASG’s research. Fig. 3 encompasses 1) the general ar-

chitecture of system engineering environments and tools;

2) the main functionalities required to support system en-

gineering throughout; and 3) the key phases of automation
systems lifecycle. The representation uses a classical lay-

ered representation [2], placing the network of entities

involved in the design of MS (e.g., supply chain organiza-

tion, engineering departments/individual engineers, etc.)

at the top level. System design (left part of Fig. 3) stake-
holders feed data models describing specific aspects of

automation systems (e.g., mechanical, control, layout,

automated/manual processes, and products) through the

use of domain or user-specific views (i.e., data represen-

tations) associated with specific engineering tools or ser-

vices. Each data model is then deployed at physical level

using specific processes and software tools, e.g., mechan-

ical build and plant layout, control node programming
and/or production systems’ configuration.

During the operational phase of CPS lifecycle (right

side of Fig. 3), information is generated by the system

(i.e., by control systems, sensors, and other monitoring

or data acquisition devices) and fed back 1) to the sys-

tem itself (e.g., machine-to-machine control and com-

munication [2]) or 2) stored and consumed at higher

levels of the engineering environment supporting pro-
duction analysis and management (e.g., SCADA sys-

tems), resources planning (e.g., ERP and associated data

storage and management systems). The secondary pur-

pose of Fig. 3 is to provide a summary view of engi-

neering gaps identified (Section II) as being critical in

developing environments that can be more effective in

supporting Industry 4.0 concepts in general and CPS

engineering in particular; mainly, integration gaps be-
tween 1) data models; 2) engineering software environ-

ments; and 3) communication/collaboration between

engineering organizations involved through the lifecycle.

Most importantly, the lifecycle of current production

system is bisected into two completely decoupled phases

(i.e., design and operation). The following sections pro-

vide a brief overview on how the engineering solution

developed by the ASG aim at closing those gaps in or-
der to more fully realize the concept of CPS and Indus-

try 4.0 engineering environment.

B. vueOne Engineering Environment
Using the descriptive framework presented in Fig. 3,

an overview of the elements that compose the vueOne

CPS engineering environment is provided in Fig. 4. The

origin of vueOne was as an automation process and con-

trol engineering tool. Its functionalities were extended to

broader virtual process planning (i.e., human operation,
industrial robot processes modeling), simulations and

analysis capabilities (i.e., energy consumption, complex-

ity rating, fatigue rating) with the purpose of providing a

collaborative engineering platform. The vueOne environ-

ment is a lightweight, low-cost, and easily deployable so-

lution, which aims at 1) providing the supply chain,

including SMEs, with access to virtual engineering (VE)

capabilities; and 2) complement rather than replace com-
mercially available VE solutions. As such it is built on

standards or open data formats and implements inter-

faces for import/export of data to and from other engi-

neering environments (e.g., X3D and PLCopen XML).
Fig. 3. Industry 4.0 oriented descriptive framework for CPS

engineering environment.
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Sharing of models and simulations is achieved through

the use of a viewer application. A key element of the

vueOne environment is the common component data

model that extends through the whole system lifecycle

and provides a mean to close the gap that exists between

the design and operation phases of CPSs. The component
data model is detailed in Section III-C. The link between

the design phase and the operational phase supports

component instantiation via automatic PLC control code

generation and deployment capabilities and the use of a

PLC runtime architecture. The runtime interface allows

data to be collected from the physical system compo-

nents and mapped back onto the digital (or cyber) sys-

tem data set. More details are provided in Section III-D.

C. CPS Data Model
A large amount of data is generated and handled

throughout the system lifecycle; during design, informa-

tion describing various aspects of the future system is
produced and stored in the form of digital data (e.g.

CAD, control, process, etc.). During the operation phase,

of CPS in particular, a large amount of data is generated

by the system itself (e.g., control state information, sensor

and monitoring device readings, production data, etc.). A

major enabler in achieving the vision and goals of Indus-

try 4.0 is to enable seamless linkage of data sets across

both vertical and horizontal dimensions of Fig. 3; a core
aspect of the ASG approach in achieving this goal is

centred around a common component data model (see

Fig. 5) that provides a structured framework for storing

both system design data and operational data.

The concept of the component (“C” in Fig. 5) defines

a level of data granularity that practically translates into

a reusable data set describing a subset of a system.

Reusability is better understood in system engineering as

system modularity or commonality [54], [55], and aims

at encapsulating the description or engineering knowl-

edge associated with part of a system in order to facili-

tate its subsequent redesign or reconfiguration. The

concept of modularity is supported to some extent by ex-
isting engineering environments, in specific engineering

domains. Data management systems are in some in-

stances used to link data sets across engineering do-

mains, e.g., Autodesk Vault ane Dassault Enovia are

example databases that provide process, product, and re-

source PPR relation management [56]. However, the use

of consistent data models across domains is typically not

reinforced through consistent engineering tools,
methods, and processes, which result in disparate level

of modularity or reusability across subsystems.

The vueOne component data model is used during

design as a common and structured repository of design

data. The core vueOne data set aims at supporting virtual

process planning and validation, and therefore consists

of the mechanical data (CAD/3D, kinematics), and a de-

scription of the control logic in the form of logical states
and transition elements represented as IEC 61131 com-

pliant state-transition diagrams. Components can be ed-

ited by the user using the vueOne component editor

module (e.g., custom machinery component including

actuators and sensors) and predefined components for

specific manufacturing resources such as human worker

(vMan module) and industrial 6R robots (vRob library)

have also been developed in order to extend the vueOne
tools capabilities (see Fig. 4).

The use of the component data model across the

whole system lifecycle (i.e., from design to operation) is

reinforced through the vLib module providing access and

management of component data. This aspect of the de-

veloped engineering environment is critical in closing

the gap between the digital system representation and

Fig. 5. Component-based data model for CPS lifecycle support.

Fig. 4. vueOne engineering environment overview.
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the real system; the component data model enables data
generated by CPS’s component (e.g., energy monitors,

controller data, and sensors) to be collected in a struc-

tured way and mapped back to the design data in order

to use data collected during operation for refining initial

design components (e.g., component energy consump-

tion data, actuation time/speed, cycle time, and control

sequence) and make design data (e.g., 3-D models and

design control layout) directly usable to support system
operation and related functionalities (e.g., remote moni-

toring, maintenance, and training).

The component data model is complemented by a

system data model that defines the system architecture

and system-level data required for consistently managing

the composition of components. Examples of system-

level data are assembly information, sequence of opera-

tions, and interlock definitions.

D. CPS Environment Interfaces
Industry 4.0 and other CPS paradigms rely largely on

seamless connectivity and interfacing between organiza-

tions and people, computational resources (e.g., data-

bases and application servers), software environments,

shop-floor level devices, sensors, and mobile devices [11].

The vueOne engineering environment design is based on
three types of conceptually defined interfaces: 1) organi-

zation level interfaces enabling communication of infor-

mation between engineers within or across organizations;

2) software level connectivity allowing exchange of data

between engineering tools; and 3) cyber to physical envi-

ronment connectivity which focus on the configuration

and connectivity with components on PLC-based control

or embedded devices.
PLCs are widely used in industry to build automation

systems. A direct link can be established between the

digital representation of a production system and the

physical system itself to enable it to be tested virtually,

e.g., via virtual commissioning and hardware in the loop

[57]–[59]. The left side of Fig. 6 describes the vueOne

control software deployment tool (composed of deploy-

ment and mapper modules) that was implemented by the
ASG to enable 1) automatic generation of PLC control

code from the state-transition-based component logic de-

fined using the vueOne editing tools, and 2) deployment

of this component control code to the target PLC(s).

The vueOne deployment module was developed with

the objective of maintaining consistency between the dig-

ital (or cyber) system representation and the real control

system configuration. This is achieved through key func-
tionalities. 1) An exact copy of both components and sys-

tem control definition, edited using the vueOne editor

and described as logical states and transition conditions,

is installed on the PLC as a data block. 2) This data block

containing the definition of the system control logic is

scanned and updated by a logic engine that supports one

or more vueOne components per PLC or embedded

controller. Component-state values are propagated be-

tween devices (e.g., multiple PLCs) where the control is

distributed. The mapper module allows mapping between
component, function blocks, I/O and memory addresses,

and the storage and version management of the mapping

information referred to as a deployment entry. The

vueOne deployment module can generate code for con-

trollers from various vendors (i.e., currently for Siemens,

Schneider, and PLCopen, plus embedded device support)

[60], [61]. The deployment capabilities include automatic

HMI-screen generation for machine-specific screens, and
support for multiple modes of operation (automatic,

manual) and cycle types (continuous, single, step-by-step

cycles, and dry run) [62]. The deployment tool also al-

lows the PLC code to be formatted according to specific

requirements; for instance, extensive development was

made in partnership with Ford UK to generate code com-

pliant with Ford’s global PLC programming standard

FAST [63].
This approach creates a solid and consistent link, or

interface between the virtual (or cyber) environment and

the physical system (both logic information and runtime

system are consistent) and allows control logic to be de-

ployed automatically to PLC controllers. In addition, the

control logic information resides on the PLC in the same

format (data array) as defined and stored in the virtual

engineering environment database. In practice, this
means that control logic installed on the real system can

be viewed or edited using the same tools and user inter-

face as the ones used for virtual engineering making it

possible to deploy engineering level capabilities on the

shop floor.

The right side of Fig. 4 provides a description of the

runtime link with PLC control systems, which was

Fig. 6. vueOne physical system interfaces.
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implemented by the ASG using OPC-UA. A standard
OPC-UA server was used [64] as it provides access to

drivers for a variety of PLCs. An OPC-UA client was de-

veloped that can retrieve configuration data from the de-

ployment database (e.g., OPC-UA and application servers

IP) and maps the live system information (e.g., working

state and faults) according to the corresponding compo-

nent. A set of application servers provide engineering

level services and functionalities which currently include
a fault tracker application target at mobile devices and

developed using the Unity 3-D engine, and a mainte-

nance information management environment which fea-

tures a web-based user interface developed using the

BootStrap framework.

IV. USE CASE

A. ASW Demonstrator
A full-scale automation system workbench (ASW) is

installed in the Warwick Manufacturing Group (WMG),

University of Warwick, Coventry, U.K., to support the re-

search and development activities of ASG (see Fig. 7). It

is a modular and reconfigurable system and hence the

application can be progressively changed as new require-

ments emerge. Machine stations can be exchanged physi-

cally and also virtually, i.e., new virtual station models
can be swapped in (and out) in place of physical stations.

The ASW features state-of-the-art control system

and automation equipment from leading vendors, e.g.,

Siemens, Bosch-Rexroth, Rockwell Automation, ABB,

Schneider Electric, Mitsubishi, Festo, and SMC. The

system has been implemented to support the latest

control system design and programming standards. The

ASW aims to provide a full-scale demonstrator for new
manufacturing automation methods, tools, and technol-

ogies with the objective to support the entire lifecycle,

e.g., enabling the digital validation, verification and visu-

alization, control code generation, and cloud-based engi-

neering services. The ASW is also used with industrial

collaborators (e.g., JLR, Ford, and their supply chains)

for demonstration of product assembly. The ASW is

currently configured to carry out a battery submodule as-
sembly demonstration as a part of an Innovate UK pro-

ject. The product assembly consists of 18650 form-factor

cylindrical cells to be assembled into a submodule incor-

porating bus bars and an integrated cooling system.

B. vueOne Engineering Environment

1) Automation Process Modeling: Component modeling

is the first step for modeling a manufacturing system.

The vueOne component editor module is provided to

create components and store them in the vueOne compo-

nent library. The component editor module provides

component modeling functions that cover three domains,
i.e., 3-D geometry, kinematics, and control logic. A com-

ponent could consist of a combination of these three

domains.

Link points (i.e., location points within the model

space) based assembly functions are provided to enable

Lego-like assembly of CAD geometry. Once a component

is assembled, kinematic behavior (such as type of joint,

displacement, acceleration, and velocity) can be defined
to animate the component. Finally, the control behavior

of a component can be described via IEC 61131-formatted

state-transition diagrams to define the high-level func-

tional states in which a component can exist. Compo-

nents can be animated in the component editor to verify

that the kinematic joints and control behavior are mod-

eled correctly. The transition from one state to another

is controlled by the transition conditions. The transition
conditions can be defined at system modeling level. An

example state-transition diagram to define the control

behavior of a two-position actuator component is shown

in Fig. 8.

In the vueOne system editor, components of the sys-

tem are instantiated from the component library and as-

sembled via link points. At system level, sequence of

operations is defined using IEC 61131 process logic. Pro-
cess logic is modeled as a set of step and transition pairs

Fig. 7. Automation system workbench (ASW).

Fig. 8.Modeling of gripper component in vueOne component

editor.
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to combine and orchestrate the service functionalities of

a group of components. A machine can have several pro-

cess logic sequences, communicating with each other to

work in an integrated and controlled manner. An example

of control logic definition (i.e., sequence of operations,
sequence checks, and interlock checks) for a robot station

to pick and place parts on pallet is shown in Fig. 9.

2) Human Work Process Modeling: Manufacturing pro-

cesses still involve a significant amount of semi-automatic

and fully manual operations, typically interspersed with

automation. Functionalities related to human operation

in most commercially available VE tools are typically ori-

ented toward advanced ergonomic assessment and pro-
vide little support for validation of human-automation

processes interactions. In addition, the required resource

investment (i.e., software purchase, training, specific IT

hardware) often prevents such solutions being used for

cross supply chain collaboration.

The vMan (virtual manikin) module, shown in Fig. 10,

developed by the ASG adopts a complementary approach

to available solutions by providing 1) a simplified manikin
skeleton (eight body joints) and 2) an intuitive process

modeling interface that allows engineers to rapidly define

and simulate operator processes in the 3) same environ-

ment as that used for automation systems modeling.

The vMan module is currently calibrated based on

MODular Arrangement of Predetermined Time Stan-

dards (MODAPTS) [65] time increment for manual task

and can generate MODAPTS formatted description of
the simulated process. Future work will focus on imple-

menting settings for using MTM and MOST [66].

3) Industrial Robot Process Modeling: The vRob (virtual

robot) module shown in Fig. 10, was designed to enable

the inclusion of industrial robots in the vueOne environ-

ment to enable simple robot sequence emulation and

provide a collaboration platform for engineers imple-

menting various types of processes. The vRob module

was not designed to replace offline robot programming

tools (e.g., Robot Studio, RT Toolbox) but rather to com-
plement them. As such, interfaces to import/export robot

sequences (position, time) to and from offline program-

ming tools are being implemented (currently import

from the ABB RAPID language is supported). A model li-

brary is provided to allow easy access to robot compo-

nents comprising CAD, preconfigured inverse kinematics

models and tooling fixture points (currently 15 6R robots

from various manufacturers).

4) System Visualization and Validation: The manufactur-

ing process plan, mechanical configuration, control be-

havior, and cycle time of the system can be validated

using vueOne system editor as well as vueOne viewer.

Fig. 9. Control logic definition in process logic to define sequence

of operation on the left, actuator control behavior on the right.

Fig. 10. vMan/vRob component in vueOne simulation.

Fig. 11. User interface of vueOne deployment for input–output

and function block mapping.
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The vueOne viewer is a lightweight application that is
designed to be used across the supply chain with mini-

mal or no training for both technical and nontechnical

users. Validation of the system behavior can be carried

through simulation, timing chart, and sequence and in-

terlock chart. After validation, the data model can be ex-

ported in XML format for use at later phases of the

engineering process, such as control logic generation,

discrete event simulation, and energy analysis.

5) PLC Control Deployment Module: The deployment

module, shown in Fig. 11, enables the deployment of

control code for the vueOne system on the target PLCs

and supports generation of the related HMI screens.

The control code deployment process can be broken

down into the pre-engineering phase and the system-

engineering phase. The pre-engineering phase is com-
posed of resource-specific function block development

and software template development for the target plat-

form. Software templates are developed once and stored

in the deployment module library, whereas resource-

specific function blocks are prevalidated control soft-

ware components to control a mechanism or family of

mechanisms or other devices. The software templates

define the structure of the generated control code.
The tasks carried out during the system engineering

phase are specific to the targeted system, which includes

target PLC/device selection, function block mapping,

input–output mapping, and code generation.

The PLC code generated by the vueOne deployment

for a Pick&Place station is shown in Fig. 12. The

Pick&Place station is controlled by Siemens SIMATIC

S300 PLC with distributed input–output modules and
SIMATIC MP277 800 touch panel. The code for Siemens

PLCs is generated as text files which are imported in the

Siemens STEP 7 software tool for compilation and down-

load into the PLC.

The vueOne deployment module supports automatic

generation of HMI for both web-based and vendor-

specific platforms. The web-based HMI screens can be

deployed on industrial PCs and tablets. An example man-
ual mode control screen generated for MP277 touch

panel based on Ford’s FAST standard for the Pick&Place

station is shown in Fig. 12.

In addition, the deployment module also generates

tags for configuration of OPC-UA applications and a

REST server to send information (such as production in-

formation, fault information, and status of sensors and

actuators) to the data servers. This enables seamless inte-
gration between shop floor and virtual engineering

environments.

6) Fault Tracker and Maintenance Tracker Tools: To

support maintenance operations at both shop-floor and

top-floor levels, a fault tracker application was developed.

The fault tracker application is targeted at smartphones,

tablets, and laptops, which are considered as interfaces to

humans operating in the shop floor and who interact with

(and are part of) CPSs by receiving, processing, and gen-

erating data/information.
The fault tracker screens shown in Fig. 13 target

three main functionalities. 1) Providing a gateway for

accessing and visualizing live system fault information

generated by PLCs devices, propagated through the

UPC-UA interface and managed by the vueOne fault

server (see Fig. 6, Section III-D above). Information

provided by the fault tracker includes fault code and

HMI screen message, system/component identification,
fault status, log time, and priority level. 2) The second

set of screens aims to provide identification of the at-

tended system/component through QR code scanning

and access to system design data such as 3-D models/

simulation used during the VE phase, vendor-specific in-

formation and maintenance information (e.g., robot data

sheets, assembly schematics, safety and hazard warnings,

etc.) or repair instructions and breakdown or replace-
ment procedures. 3) The last screen aims at enabling

Fig. 12. Autogenerated PLC code and HMI screen.

Fig. 13. vueOne fault tracker mobile application’s main screens.
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maintenance technicians or engineers to upload fault and
maintenance information to the database (textual infor-

mation, camera device capture).

V. CONCLUSION AND FUTURE WORK

A system-engineering environment has been presented

aimed at supporting the complete lifecycle of distributed

component-based automation from design to operation
and reconfiguration. The vueOne engineering environ-

ment functionalities focus on 1) virtual engineering and

validation of CPSs physical layout and control logic;

2) direct deployment of component-based control to

PLCs and other embedded devices; 3) the connectivity

between the virtual data set and the real system; 4) en-

hanced support for operation related tasks (e.g., mainte-

nance); and 5) maintain consistency between the virtual
(cyber) and physical systems and therefore enhance capi-

talization and reuse of engineering knowledge and data.

The appearance of open platforms, tools, and stan-

dards data formats has the potential for dramatically ex-

panding the scope of players in the CPS automation

innovation processes, disrupting old business models.

Standards are on the critical path of CPS engineering

tools’ development as they accelerate the implementation
and introduction of nonproprietary solutions (which are

essential for Industry 4.0), and also enable smaller com-

panies to adapt more rapidly. The ASG is focusing its re-

search on implementing lightweight, usable, and open

solutions based on open standards and technologies (e.g.,
XML data representation, web-based interface, and web-

services-based software integration). The vueOne future

development map includes the implementation of inter-

faces to import and export to interchange formats, most

notably AutomationML.

Defining and reinforcing the use of common data in-

terchange formats, achieving connectivity between engi-

neering organizations and the engineering software those
organizations use, is critical. Industry 4.0 promotes the

use of web-services-based methods in order to achieve

agile integration of engineering software. The ASG has

implemented REST APIs for a number of the vueOne

software components and is testing integration with a

number of commercial applications.

For SMEs, the cost associated with the deployment of

engineering software (e.g., license purchase, mainte-
nance, support, updates, and training) is often a major

barrier to establishing advanced engineering capabilities.

The ASG aims at providing virtual engineering capabili-

ties currently inaccessible to most SME and therefore

impacting on their ability to effectively collaborate with

larger companies. The ASG is also focusing on develop-

ing the vueOne environment as a portal of services or

Software as a Service (SaaS) which, associated with a
subscription-based business model, will in the long-term

enable SMEs to deploy engineering capabilities at lower

costs and in a more agile manner. h
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