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This paper reviews the recent development of Digital Twin technologies in manufacturing systems and processes,
to analyze the connotation, application scenarios, and research issues of Digital Twin-driven smart manu-
facturing in the context of Industry 4.0. To understand Digital Twin and its future potential in manufacturing, we
summarized the definition and state-of-the-art development outcomes of Digital Twin. Existing technologies for
developing a Digital Twin for smart manufacturing are reviewed under a Digital Twin reference model to sys-
tematize the development methodology for Digital Twin. Representative applications are reviewed with a focus

on the alignment with the proposed reference model. Outstanding research issues of developing Digital Twins for
smart manufacturing are identified at the end of the paper.

1. Introduction

Digital Twin has gained significant impetus as a breakthrough
technological development that has the potential to transform the
landscape of manufacturing today and tomorrow [1]. Digital Twin [2],
acting as a mirror of the real world, provides a means of simulating,
predicting and optimizing physical manufacturing systems and pro-
cesses. Using Digital Twin, together with intelligent algorithms, orga-
nizations can achieve data-driven operation monitoring and optimiza-
tion [3], develop innovative product and services [4], and diversify
value creation and business models [5].

Though studies have reported the potential application scenarios of
Digital Twin in manufacturing, we identified that current approaches to
the implementation of Digital Twin in manufacturing lack a thorough
understanding of Digital Twin concept, framework, and development
methods, which impedes the development of genuine Digital Twin
applications for smart manufacturing. In this study, we discussed the
connotations of Digital Twin-driven smart manufacturing in the context
of Industry 4.0. The objectives and the contributions of this paper are to
provide comprehensive discussions on the impact, reference model,
application scenarios and research issues of Digital Twin for achieving
smart manufacturing.

The remainder of the paper starts with tracing the vision of Digital
Twin and the development to date based on studies from the literature
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(see Section 2). This is followed by an in-depth discussion on the con-
notation of Digital Twin-driven smart manufacturing in Section 3,
highlighting how Digital Twin will transform the future manufacturing
landscape. Section 4 details a Digital Twin reference model and en-
abling technologies for developing a Digital Twin-driven smart manu-
facturing solution. An overview of existing Digital Twin applications
and some typical application scenarios are presented in Section 5.
Section 6 discusses the critical research issues for future research.
Section 7 concludes the research work.

2. Digital Twin overview

This section traces the history of the Digital Twin concept, clarifies
its relations with several other tropical concepts in the manufacturing
domain, summarizes its research and development progress, and
highlights the research gaps.

2.1. Definition

Digital Twin was conceived in [6] as a method to predict the
structural behavior of an aircraft by analyzing and simulating the air-
craft's behavior on its digital model in 2011. A year later, NASA defined
Digital Twin as “an integrated multi-physics, multi-scale, probabilistic
simulation of a vehicle or system that uses the best available physical
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models, sensor updates, fleet history, and so forth, to mirror the life of
its flying twin [2].” There was limited exploration since then, until
2015, the explosion of machine learning, wireless communication and
cloud computing boosted the research activities on Digital Twin. Sev-
eral definitions of Digital Twin came out afterwards. For instance, Di-
gital Twin was seen as the next generation of simulation [7]. Tao and
Zhang believed that Digital Twin is a method of achieving the con-
vergence between physical and virtual spaces [8].

Now, Digital Twin has evolved into a broader concept that refers to
a virtual representation of manufacturing elements such as personnel,
products, assets and process definitions, a living model that con-
tinuously updates and changes as the physical counterpart changes to
represent status, working conditions, product geometries and resource
states in a synchronous manner [9]. The digital representation provides
both the elements and the dynamics of how a physical ‘thing’ operates
and lives throughout its life cycle.

2.2. Concept clarification

There exist diverse viewpoints on the relationships between Digital
Twin and other concepts, such as simulation, Cyber-physical Systems
(CPSs) and Internet of Things (IoT). Though these concepts are closely
related, they, by their nature, are different on the concept, core ele-
ments, and application.

2.2.1. Digital Twin and simulation

A Digital Twin is a digital replica of a real-world ‘thing.” While this
looks close to simulation, Digital Twin is much more. A Digital Twin is a
high-fidelity representation of the operational dynamics of its physical
counterpart, enabled by near real-time synchronization between the
cyberspace and physical space [10]. The operational dynamics are
critical elements of a Digital Twin because a twin's behavior is based on
near real-time data coming from the actual physical counterpart. Si-
mulation focuses on what could happen in the real world (what-if sce-
nario), but not what is currently happening. In the manufacturing
context, a Digital Twin can be used for monitoring, control, diagnostics,
and prediction, other than just simulation [10].

2.2.2. Digital Twin, CPS, and IoT

Though Digital Twin, CPS, and IoT all use networking and sensors,
Digital Twin is a different but interrelated concept with CPS or IoT, as
shown in Fig. 1.

A CPS is characterized by a physical asset and its Digital Twin. In
contrast, a Digital Twin is limited to the digital model, not the twinning
physical asset, though a Digital Twin cannot live without its twining
asset in the physical space. In other words, Digital Twin represents the
prerequisite for the development of a CPS [12].

IoT refers to connections between a network of physical assets

(" Cyber World Digital Twins

e -

loT

Physical Assets

Physical World

Fig. 1. The relationship between Digital Twin, CPS and IoT (adapted from
[11]).
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through which data can flow between themselves. The connections are
made possible by the secure implementation of computer networks, the
Internet, and communication protocols. However, despite the con-
nectivity, IoT does not include the idea of digital models in the cyber-
space. The IoT is the infrastructure in the physical space for connecting
physical assets [11].

2.3. Research activities

The research activities on Digital Twin have gained hyper growth
during the past three years driven by the strategic implementation of
Industry 4.0 from world-leading research organizations and tech giants.

2.3.1. Academic research outcomes

Digital Twin related engineering research is in its infancy with
significant growth during the past three years as shown in Fig. 2(a). The
number of publications on this topic in 2018 tripled that in 2017. A
large percentage of the research outcomes come from the US, Germany,
and China, who are leading the race to Industry 4.0. A small number of
researchers and research organizations contributed nearly 40% of the
total number of articles on this topic.

2.3.2. Industry research outcomes

Digital Twin has attracted strong interests from industry practi-
tioners too. The Digital Twin market is forecasted to reach $15.66
billion by 2023 at an annual growth rate of 37.87% according to a
market research in 2017 [13]. GE developed a Digital Twin platform —
PREDIX that can better understand and predict asset performance [14].
SIEMENS's focus covers smart operations during the complete process
of product design, production and operation [15]. ABB emphasizes on
enabling data-driven decision makings [16]. Microsoft also geared up
its Digital Twin product portfolio, providing a ubiquitous IoT platform
for modeling and analyzing the interactions between people, spaces,
and devices [17]. Initiatives from these tech leaders have significantly
pushed the boundary of Digital Twin for engineering applications.

2.4. Research challenges

Though some early adopters have demonstrated some applications
of Digital Twin for manufacturing, current implementation limitations
are (1) inadequate understanding of the connotation of Digital Twin-
driven smart manufacturing, with the current focus mostly on product
operation and maintenance, (2) the lack of reference models for Digital
Twin, and (3) superficial knowledge of the research questions and
challenges of Digital Twin, with current research outcomes mostly
showing preliminary application examples.

The sustainable development of Digital Twin-driven smart manu-
facturing needs critical analysis on the above aspects based on the de-
velopment trend of smart manufacturing, which the research in this
paper aims to address.

3. Digital Twin-driven smart manufacturing

Manufacturing is becoming smart at all levels from the physical
device, through factory management, to production networks, gaining
abilities to learn, configure and execute with cognitive intelligence.
This section outlines the trend of smart manufacturing and discusses the
connotation of Digital Twin-driven smart manufacturing, highlighting
the impact that Digital Twin may have for future manufacturing.

3.1. Smart manufacturing

Smart manufacturing is coined by several agencies, such as the
Department of Energy (DoE) and the National Institute of Standards and
Technology (NIST) in the United States. According to Davis et al., smart
manufacturing is the dramatically intensified application of
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‘manufacturing intelligence’ throughout the manufacturing and supply
chain enterprise [18]. It comprises the real-time understanding, rea-
soning, planning and management of all aspects of manufacturing
processes, facilitated by the pervasive use of advanced sensor-based
data analytics, modeling, and simulation. NIST defines smart manu-
facturing systems as “fully-integrated, collaborative manufacturing systems
that respond in real time to meet changing demands and conditions in the
factory, in the supply network, and customer needs. [19]”

In smart manufacturing, a physical ‘thing’ in a factory is connected
to the Industrial Internet via standard cyber gateways and abstracted as
a Digital Twin in the cyberspace. Each Digital Twin in the cyberspace is
an abstraction of its counterpart in the physical world by reflecting its
physical status. The cyberspace stores and processes the streamed data
from connected physical objects. These data are used to model, simulate
and predict the status of each physical thing under dynamic working
conditions. The pervasive use of smart technologies, such as Big Data
Processing and Artificial Intelligence enables the extraction of manu-
facturing intelligence at every single moment of manufacturing activ-
ities. The collective intelligence in locally connected factories and the
cyberspace paves the way for some dramatic changes from the aspects
of intra-business operation, inter-business collaboration and production
model, as shown in Fig. 3.

e Smart Production: Manufacturing systems augmented with cogni-
tive intelligence [20] can take over more and more production jobs.
Connected and self-organizing manufacturing systems will tackle
new manufacturing tasks with high efficiency and flexibility. The
relationship between humans and machines will also change; one
direction is a factory will become fully-immersed human-machine
collaboration space [21].
Smart Production Network: Connected cyber-physical production
systems will form a global production network that can respond in
almost real-time to dynamic changes in local production systems
and external supply chain [22]. A production network of adaptive
and self-optimizing production systems can enable autonomous
configuration and planning of production activities for production
jobs at changing scales to achieve sound economic, environmental
and social impacts.
e Mass Personalization: Production model will move from a push-
type mass production model to pull-type mass personalization [23].

Smart factories that are fully responsive to changes and demands
from the factory, supply chain, and customer side can achieve batch-
size-of-1 production with high efficiency and flexibility. The ubi-
quitous manufacturing intelligence in distributed factories and
production systems can sense, configure and collaborate by them-
selves based on near real-time production status and demands,
which therefore provides the required agility for producing highly
personalized products.

3.2. Digital Twin for smart manufacturing

Digital Twin plays a pivot role in the vision of smart manufacturing.
It enables the shift from analyzing the past to predicting the future. The
live representation of reality via Digital Twins allows us to evolve from
ex-post data gathering and analytics towards real-time and ex-ante
business practices. Mirroring the vision of smart manufacturing in
Fig. 3, Digital Twin can influence future manufacturing from the fol-
lowing aspects.

e Digital Twin for manufacturing assets: A manufacturing asset can
be connected and abstracted to the cyberspace via its Digital Twin.
Manufacturers can gain a clearer picture of real-world performance
and operating conditions of a manufacturing asset via near real-time
data captured from the asset and make proactive optimal operation
decisions. With truthful information flowing from a manufacturing
asset, manufacturers can improve their situational awareness and
enhance operation resilience and flexibility, especially in the context
of mass personalization.

e Digital Twin for people: Digital Twins can also connect workers at
the shop floor. The representation of a person, including personal
data like weight, health data, activity data, and emotional status can
help to establish models to understand personal wellbeing and
working conditions of humans in a factory. The understanding of
human state at workforce can help design human-centered human-
machine collaboration strategies to increase the physical and psy-
chological health of workers, as well as achieving best production
performance. Workers can also upskill themselves via ultra-realistic
training programs which blend physical factory setups with virtual
what-if scenarios. The ability to set up personalized virtual training
programs based on Digital Twins of workers and factories can lead



Y. Lu, et al.

Robotics and Computer Integrated Manufacturing 61 (2020) 101837

e N
Smart Production Production Network Mass Personalization
Intra-business Inter-business Business - Consumer
Applications
\ PP y,

$

$

-
Cyberspace

Decision-making Optimization

Data Collection and Exchange

~
Manufacturing Intelligence

Modeling, Simulation and Analysis

Data Integration and Processing

$

-
Cyberspace Gateway

L

t N\

Standard Connectivity

Factory A

Physical Things

—_— — —
.

o Factory C

Fig. 3. Smart manufacturing vision.

to tremendous resource optimization and operational efficiency.
Digital Twin for factories: Digital Twins can also work for fac-
tories, making a replica of a live factory environment. Digital Twin
and data-driven production operations can allow the establishment
of a self-organizing factory environment with complete operational
visibility and flexibility. Connectivity and data tracking throughout
the complete manufacturing process enable factory operations to be
transformed into data-driven evidence-based practices, offering the
capabilities of tracing product fault sources, analyzing production
efficient bottlenecks and predicting future resource requirements.
Digital Twin for production networks: By connecting manu-
facturing assets, people and service via Digital Twin, every aspect of
business can be virtually represented. Connecting distributed Digital
Twins between companies will allow companies to build virtually
connected production networks. Leveraging Big Data capabilities,
this strategy provides unprecedented visibility into operation per-
formance and creates the possibility of predicting future needs in a
network of Digital Twins.

4. Digital Twin reference model

Digital Twin reflects the two-way dynamic mapping between a
physical object and its virtual model in the cyberspace [24]. A Digital
Twin presents a middleware architecture that abstracts its physical
counterpart for high-level engineering management systems to make
near real-time decisions [25]. Fig. 4 shows a Digital Twin reference
model. At the technical core, the development of Digital Twin needs
three components: (1) an information model that abstracts the speci-
fications of a physical object, (2) a communication mechanism that
transfers bi-directional data between a Digital Twin and its physical
counterpart, and (3) a data processing module that can extract in-
formation from heterogeneous multi-source data to construct the live
representation of a physical object. These three components must work
together for constructing a Digital Twin. Without an information model
to abstract the features of a physical entity, data transmitted to the
cyberspace will lose its meaning and context. Without a data synchro-
nization mechanism between a physical model and its information

Digital Twin

Information Model

Communication

1 |

Physical Object

Fig. 4. A Digital Twin reference model.

model, the connection and reflection between these two ends will dis-
connect, and the information model becomes a one-off snapshot of its
physical counterpart. High-performance data processing is the key to
bridge the gap between the heterogeneous data stream and the Digital
Twin information model.

4.1. Information model

A physical object is abstracted with a pre-defined information model
that represents its specifications of concern. Standard plays a critical
role in providing the information model for describing various physical
objects in the manufacturing domain. Fig. 5 lists well-recognized
standards that provide standard information models for describing
physical objects in the manufacturing domain. These information
models are classified into two subtypes: information models for product
Digital Twin and information models for production Digital Twin.
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Fig.5. Timeline-based depiction of standards for Digital Twin in the manufacturing domain (Enriched from [26]).

4.1.1. Information models for product Digital Twin

The most predominant standards for developing product Digital
Twin are ISO 10303 [27] and ISO 14649 [28] standards. ISO 10303
[27], known as STEP, provides a neutral data structure for exchanging
product data between CAD systems. Its latest development of AP242
[29] for ‘Managed Model Based 3D Engineering’ by merging AP203 and
AP204, with a focus on the representation of 3D model data, geometric
tolerance and PMI (Product Manufacturing Information), provides a
sound technological base for global design and manufacturing colla-
boration. Geometric tolerance and PMI information can now be read by
machines directly from product design files in STEP AP242 model
without the need of interpreting 3D drawings. This change closes the
communication gaps between various stages of the product lifecycle,
resulting in autonomous process planning, manufacturing, inspection,
and so forth.

ISO 14649 [28] and ISO 10303-238 [30] (also known as STEP-NC)
are proposed to replace the RS274D (ISO 6983) M and G code via a
modern associative language that directly connects the CAD design data
used to determine the machining requirements for operation with the
downstream fabrication processes. STEP-NC allows manufacturing or-
ganizations to share machining information between machines seam-
lessly via the exchange of semantic-enriched ‘what-to-do’ information.
It relies on intelligent machine tools to interpret ‘how-to-do’ instruc-
tions adaptive to the local machining conditions. The shift of inter-
preting local machining instructions into the machine controller level
maximizes the interoperability between distributed machine tools.

4.1.2. Information models for production Digital Twin

ISO 13399 [31] is an international standard by ISO for the com-
puter-interpretable representation and exchange of industrial product
data about cutting tools and tool holders. It provides a neutral me-
chanism capable of describing product data regarding cutting tools.
This information model has been used for CAD/CAM/CNC integration,
tool management, product data management and manufacturing re-
source planning. Similarly, ISO 14649-201 [32] defines a model for
specifying machine tool data required for cutting processes.

Targeting at describing machine tools, MTConnect standard offers a

semantic vocabulary for manufacturing equipment to provide struc-
tured, contextualized data with no proprietary format [33]. It is de-
veloped to translate manufacturing data into a common, internet-based
language interpretable by software applications. MTConnect defines a
hierarchical information model for machine tools. The information
model represents the logical structure of a machine tool, including the
components, the available data and the relationships between them.

OPC Unified Architecture (OPC UA) [34] is another open standard
that specifies information exchange for industrial communication on
devices within machines, between machines and from machines to
systems. A widely-recognized OPC-UA information model is MTCon-
nect-OPC-UA companion specification, aiming at improving the inter-
operability between these two standards. MTConnect-OPC UA compa-
nion specification ensures interoperability and consistency between
MTConnect specifications and the OPC UA specifications, as well as the
manufacturing technology equipment, devices, software, or other pro-
ducts that implement those standards.

It is common that the information model from a single standard
cannot meet the application requirements because of the breadth of the
potential application of Digital Twin. Past studies suggest a systematic
information model development process to ensure maximum standard
conformance and usability [35]. MTConnect and OPC-UA community
also recommend a bottom-up approach to expanding existing in-
formation models to suit new application needs, especially when now
IT disruptions outpace the manufacturing standard development.

4.2. Industrial communication — twinning tools

A communication network is another critical factor for enabling the
establishment of Digital Twins. State synchronization between a Digital
Twin and its counterpart in the physical space relies on bi-directional
and real-time data communication. State changes to a physical object
are detected by sensors and transmitted to its Digital Twin in the cy-
berspace. In this regard, industrial communication protocols can help
collect data from physical devices.

Table 1 presents a list of industrial communication protocols used
for industrial process monitoring and control. These protocols are
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mapped to the ISO Open Systems Interconnection (OSI) model but very
often modified (or simplified) to satisfy the real-time and reliability
requirements of industrial processes. Existing industrial systems are
typically implemented with heterogeneous networks. These industrial
networks can be classified into three different categories. The first ca-
tegory consists of the earliest development of industrial networks, or
the so-called Fieldbus, which represents the common legacy networks
in existing industrial automation systems. The second category is the
next generation of industrial networks, which are typically Ethernet-
based protocols but with modifications to satisfy the real-time and re-
liability requirements. The third category is the recent development
following the trend of the Internet of Things that typically makes use of
wireless network technologies.

4.2.1. Fieldbus networks

In the late 1970s to late 1980s, several dedicated industrial net-
works (or Fieldbus), such as PROFIBUS [39] and Modbus [38], were
developed to support the machine to machine communications and the
remote terminal control of programmable logic controllers, for process
and peripheral control/automation. As shown in Table 1, many
Fieldbus protocols were designed to operate on different physical media
and have widely incompatible communication stacks across different
layers of the OSI model. This has thus lead to closed-loop silos which
prevents data exchange and communication between standards. The
current trend is moving towards adopting Ethernet-based standard,
such as Modbus/TCP [41], in order to facilitate inter-communication at
a higher level (e.g., the Internet or the enterprise control system).

Table 1 also provides a high-level comparison between different
types of industrial networks in terms of their communication data rate
and the number of supported devices on a single network. While the
performance varies significantly among the three categories, it should
be noted that the data rate and the number of supported devices in a
specific network are heavily influenced by the selected physical
medium, operation mode (and hence communication overhead), net-
work topology, and the length of the physical medium (e.g., cable
length). While Fieldbus networks seem to offer a slower data rate and
fewer devices, their key advantage is usually the deterministic com-
munication time for safety-critical operations.

4.2.2. Ethernet-based industrial networks

An increasing number of manufacturers are using Industrial
Ethernet-based solutions to connect systems. This is driven by the need
of high-performance integration between factory installations and the
Industrial Internet of Things [45]. The advantages of Industrial Ethernet
over traditional Fieldbus systems are its homogenous network infra-
structure, ease of integration with the Internet, greater bandwidth to
transmit safety-critical data, and the ability to communicate over longer
distances. Even with the adoption of a common Ethernet standard,
devices that support different Industrial Ethernet standards are not
compatible or interoperable with each other because of the unique
protocol stacks in different Industrial Ethernet standards. The future
Ethernet IEEE 802.1 TSN (Time Sensitive Networks) standard could
eventually make time-critical and deterministic network communica-
tion via standard Ethernet components possible, thus facilitating wider
adoption and better interoperability.

4.2.3. Industrial wireless networks
One of the key driving features in Digital Twin and throughout the
automation and manufacturing industries is the need for data/
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information exchange. This is evident from the early development of
the Fieldbus systems. Since 2000, the concept of IoT and Wireless
Sensor Networks (WSN) are also impacting the industrial network field.
Most of modern approaches are adopting existing standards such as
IEEE 802.11 [46] (e.g., WiFi-based), IEEE802.15.1 (e.g., Bluetooth-
based), and IEEE 802.15.4 [47] (e.g., Zigbee-based). While wireless
networks have the intrinsic benefit of ease of installation due to no
wiring and low cost, existing approaches are still limited due to the lack
of reliability and potentially long latency for safety-critical and real-
time data.

4.3. Big data processing

The data gathered from various sources to construct a Digital Twin
will be Big Data [48], if not now. Efficient processing of Big Data
gathered from the physical space is the third pillar of developing a
Digital Twin.

Data processing methods that use statistical analysis and prediction
models while ignoring noise and conflicts between single data records
do not apply to Digital Twin development by default. The following
unique features need to be considered for Big Data analysis solutions
targeting Digital Twin industrial applications.

e Hidden Meaning — Feature extraction in industrial Big Data ana-
lysis needs to analyze the meaning of a feature and the relations
between features in the real world, in addition to statistical analysis
of feature relations.

o Timeliness - Industrial data analysis requires low-latency data
processing to enable time-sensitive applications, such as cloud-based
industrial control [49].

e High Quality — Data quality is sometimes more important than its
volume. Industrial Big Data applications need high-quality data that
covers the full spectrum of the system/process to be analyzed. Noise
and data conflicts can directly break data analysis and result in
unusable results.

Therefore, there exists a demand for a low-latency data processing
system that can integrate domain knowledge verification for data pro-
cessing. To this end, we propose the following general data processing
framework for constructing Digital Twins as shown in Fig. 6.

4.3.1. Data acquisition and cleansing

Real-world data collection comes with noise and missing data. It is
essential to clean low-quality raw data into ordered, meaningful and
simplified forms.

A missing value is a datum that has not been stored or gathered due
to a faulty sampling process, cost restrictions or limitations in the ac-
quisition process. Inappropriate handling of the missing values will
easily lead to poor knowledge extraction and wrong conclusions [19].
One option is to discard the instances that may contain a missing value.
However, this approach is rarely beneficial, as eliminating instances
may produce a bias in the data processing process, and a Digital Twin
can miss some critical snapshots. Another method is to use a statistical
method to ‘guess’ an approximate value to fill the missing values. This
method can be a good choice if integrated with domain knowledge
reasoning. There are physical models behind activities occurring in the
manufacturing environment. The domain knowledge can be used as the
base rules for making a reasonable prediction of the missing value.

Conflicting or redundant data records can introduce bias in the data

Data Stream Acquisition and Data Stor.
Data Warehouse Cleansing ata Storage

Unstructured Data &

Time-sensitive
Data Processing

Fig. 6. Data processing for industrial
big data.

Logs :> ﬁ 8

8 ::) Digital Twin
Information
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Table 2

Representative data storage options.

Example

Application

Description

Database

Type

Aerospike, DynamoDB, Redis, Riak

Used for storing clickstream data and log files, such as CPS

log files

A data model that pairs a unique key and its associated value in storing data

elements

Key-value database

Non-relational database

Couchbase Server, CouchDB, MarkLogic,

MongoDB

Content management and monitoring web and mobile

applications

Stores data in document-like structures that encode information in formats

such as JSON

Document database

AllegroGraph, IBM, Neo4j

Recommendation engines and knowledge base

Emphasizes connections between data elements, storing related ‘nodes’ in

graphs to accelerate querying

Graph Database

Accumulo, Cassandra, HBase, Hybertable,

SimpleDB

Internet search and other large-scale Web applications

Stores data across labels that can have a huge number of columns

Column stores

MySQL, PostgreSQL, Microsoft SQL Server

Complicated query, database transactions, and data

analysis

Stores information in structured tables with rows and columns

SQL database

Relational database
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analysis results. Two main approaches can be used to solve the pro-
blem. The first one is to correct the noise by using data polishing [50],
primarily when the data affects the annotation of a physical-related
status. The second method is to use noise filters [51], which identifies
and removes the noisy instances in the data while maintaining the re-
presentation of the physical state of the object to be modeled. Both
methods require extensive use of domain knowledge to drive the pol-
ishing and filtering decisions to ensure corrective actions can be taken
so that the nature of the data set is not changed.

4.3.2. Data storage

There is a multitude amount of data storage options tailored to
different kinds of data formats and application requirements, which are
classified as relational databases and non-relational databases (as
shown in Table 2). Relational databases are good choices for applica-
tions that involve the management of complex database transactions
and heavy data analysis, because of referential integrity.

Non-relational databases are geared towards managing large sets of
varied and frequently updated data, often in distributed systems. They
avoid the rigid schemas associated with relational databases. The ar-
chitectures vary and are separated into four primary classifications,
each of which is suitable for different application scenarios as listed in
Table 2.

In the context of smart manufacturing, key-value databases can be
used for storing software log files from connected CPSs. Similarly,
documents can be stored in document databases to ensure high flex-
ibility and durability. Engineering knowledge can reside in graph da-
tabases to accelerate querying and reasoning. Column stores allow for
fast querying and processing and it is heavily used for big-data analysis
where speed is critical. In practice, these databases will need to com-
plement each other to ensure low latency.

4.3.3. Time-sensitive data processing

Digital Twin applications, such as real-time monitoring, prediction,
and control impose a stringent latency requirement for the data pro-
cessing architecture [52]. A ‘designed for latency’ data processing ar-
chitecture becomes a critical criterion.

Parallel computing technologies can ensure low-latency data pro-
cessing. The essence of data parallelism paradigm is to divide a com-
putational task into a cluster of similar sub-tasks that can be processed
independently and whose results are combined afterwards, upon com-
pletion. MapReduce is one such technology that has been widely used.
Recognizing its limitation for stream analytics [53], some competitors
emerged as an alternative, capable of performing stream analysis.
Apache Spark is a large-scale data processing engine for both batch and
stream processing. Apache Flink later emerged as a better option be-
cause of its built-in streaming processing, instead of using micro
batching to handle stream processing. Apache Storm is an open-source
distributed real-time processing platform. Besides, some other
streaming engines can be used where appropriate, such as Kafka
Streams and Google Dataflow.

Though the above technologies provide the foundation for Big Data
processing, high-performance processing of time-series data is the key
to the successful implementation of a Digital Twin. This is due to two
reasons: (1) data gathered from the physical world are mostly discrete
time data, and (2) there is timeliness requirement for a Digital Twin,
regardless of the latency requirement between a Digital Twin and its
physical counterpart. The effective handling of time-series data to
construct a Digital Twin can ensure a required latency between a Digital
Twin and its physical counterpart.

5. Application scenarios
Although Digital Twin is a relatively new concept, some practical

applications of Digital Twin have already been developed and reported
in the literature. This section briefs the current status of Digital Twin
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applications. First, an overview of existing Digital Twin applications is
provided, and the current status of Digital Twin applications is dis-
cussed. Second, three representative Digital Twin applications are in-
troduced to demonstrate the advantages and potential of Digital Twin.

5.1. Overview of existing digital twin applications

Existing Digital Twin applications reported in the literature have
been reviewed and summarized in Table 3. The details of each Digital
Twin application are also briefly mentioned, including (1) the type of
the Digital Twin, i.e., manufacturing asset, human, factory or produc-
tion network), (2) the physical object of the Digital Twin, (3) the in-
formation model of the Digital Twin, (4) data communication standard
used in the application, and (5) the benefit(s) or purpose(s) of the Di-
gital Twin application.

It can be seen that compared to the total number of publications on
Digital Twin, most of the existing research on Digital Twin is conceptual
work, development of practical Digital Twin applications is still at an
early stage. Key findings are as follows:

e Digital Twin type: 85% of Digital Twin applications are developed
for manufacturing assets; 11% are developed for factories; only one
Digital Twin application for people has been identified, and there is
no Digital Twin application for production networks. This shows
that prior Digital Twin research mainly focused on manufacturing
devices; the importance of the involvement of human in the Digital
Twin environment has been overlooked. Besides, the lack of appli-
cations for production networks indicates that research on com-
munication/interactions between Digital Twins has not attracted
much attention.

o Information model: For the Digital Twin for manufacturing assets,
information models that describe the data structure and semantics
are mostly used, including different types of data models
(MTConnect, OPC-UA, AutomationML and so forth) and databases.
However, the information model for a factory Digital Twin has not
been explored to depth. Whether this should be an integration of
existing information models for manufacturing assets or should be a
standard that governs all still needs to be addressed.

e Data communication standard: Only a few applications have used
unified data communication standards for modeling a Digital Twin.
This issue can severely limit the interoperability and accessibility of
a Digital Twin. It may also be the main reason why no Digital Twin
application for production networks has been developed so far.

e Purpose/benefit: Most applications are developed to provide
monitoring functions (status monitoring, process visualization, fault
diagnosis, and so forth) and prediction functions (fault prognosis,
product lifecycle management, process optimization, and so forth).
Most applications can be seen as decision-making support applica-
tions for humans; while very few of them have included direct/au-
tonomous feedback control from Digital Twin to a physical object.

5.2. Representative applications

Though the development of Digital Twin applications is still at a
very early stage, several full-fledged Digital Twin applications have
emerged. Here, we discuss some of the important application scenarios.

5.2.1. Digital Twin machining

STEP Tools Inc. developed a Digital Twin Machining application
[80] that enables real-time quality inspection of machining results.
Fig. 7 shows the system framework of Digital Twin Machining. The
Digital Twin is enabled by the utilization of four standards: 1) STEP
[27], 2) STEP-NC [28], 3) MTConnect [33], and 4) Quality Information
Framework (QIF) [81].

STEP AP242 [29] is used to describe the design information of a
workpiece. The manufacturing solutions, including all the operations,

10

Robotics and Computer Integrated Manufacturing 61 (2020) 101837

setups, tool paths, tool requirements, and in-process tolerances, are
communicated via STEP-NC AP238 protocol [30]. MTConnect is used to
monitor the machining results. It allows the machine tool status and
coordinates to be streamed to the Digital Twin in real time (100 Hz).
The MTConnect data stream also includes measurement results as re-
ported by touch probes to enable tolerance evaluation. QIF is used to
report the results of the quality evaluations. The utilization of these
standards provides the Digital Twin Machining solution with great in-
teroperability.

The Digital Twin functions as a server that allows Web-based ap-
plications to access all the data in the Digital Twin. In the Digital Twin
Machining application developed by STEP Tools Inc., the models of
workpieces, cutters, fixtures, as well as operations and tool paths are
fully assembled to perform real-time machining simulation. During real
machining processes, the assembled model is updated in real time to
show the machining results on the Digital Twin. Operators can remotely
monitor the machining processes using mobile devices that support
standard Web browsers. Measurements can be made on the Digital twin
and alerts can be sent if tolerances are not being met. Thus, the Digital
Twin Machining enables “build it here, build it now and build it right,”
as claimed by STEP Tools Inc.

5.2.2. Digital Twin for a rotor system

Wang et al. [66] developed a Digital Twin application for rotating
machinery fault diagnosis that can identify the fault parameters of a
rotor system and perform quantitative diagnosis of the rotor system.
The overall system architecture of the developed application is shown
in Fig. 8.

Since the main purpose of this application is the fault diagnosis for
rotating machinery, modeling of the Digital Twin mainly considers the
dynamic behavior of the rotor system. Hence, the Digital Twin of the
rotor is constructed using a finite element model that includes the
geometry, dynamics and material properties of the rotor. The critical
speed and unbalance response of the rotor under different conditions
are obtained by finite element analysis. Four displacement sensors and
a data acquisition system were implemented to collect the vibration
signals from the rotor system.

The rotor unbalance fault quantification and localization were
performed to realize the fault diagnosis. Compared with traditional
fault diagnosis methods, the developed Digital Twin application enables
unbalance quantification and localization for fault diagnosis, which
further enables accurate diagnosis and adaptive degradation analysis of
rotating machinery.

5.2.3. Digital Twin enabled Cyber-Physical Machine tool

Aiming at advancing legacy machine tools to Cyber-Physical
Machine Tools (CPMT) [83], Liu et al. [68] developed an MTConnect-
based CPMT where the Digital Twin of the machine tool is a core
component. Fig. 9 shows the system architecture of the developed
MTConnect-based CPMT. Real-time machining data were collected
from the CNC controller and embedded sensors and communicated
through to the Digital Twin via MTConnect standard.

The implementation of MTConnect standard significantly improved
the interoperability of the machining data and hence the accessibility of
the Digital Twin. A prototype of a machine tool monitoring system was
developed to enable near real-time remote machine monitoring.

6. Research issues

Based on the discussions in the above sections, we summarize the
following key research issues for advancing the research of Digital
Twin-driven smart manufacturing.

Research issue 1: architecture pattern for a Digital Twin

There exist two system architecture patterns, namely server-based
and edge-based. In server-based architecture, the data acquired from a
physical device is routed back to a centralized server that performs the
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data analysis and Digital Twin construction. This pattern provides
economies of scale and facilitates easy maintenance. In edge-based ar-
chitecture, some data analysis is applied at the ‘edge’ of the system.
That is, data pre-processing is performed locally and on the raw data
captured from a physical device. As a result, edge-based architecture
should be more effective on low-latency data processing if designed
well. However, this pattern is more complicated to maintain.

Research issue 2: communication latency requirement for a Digital
Twin

Latency requirement is application-driven. The application scenario
determines the required communication latency between a physical
device and its Digital Twin. This is because the system development
costs and difficulties increase significantly as the communication la-
tency requirement becomes stringent. In practice, Digital Twin-based
shop floor monitoring can accept higher latency than cloud-based in-
dustrial control. BMWi, Germany [85] specifies the nominal commu-
nication latency for various manufacturing applications, which can be
used as a guideline for designing the system architecture of a Digital
Twin application.

Research issue 3: data capture mechanism

Physical System

Sensing
Measurements"

Data Acquisition System

Measured Response

Calculated Response

Two common methods can be used to gather data from physical
devices, i.e., capturing changes and taking snapshots. There is extensive
use in large scale computer systems for both methods, and sometimes a
system uses a mix of them. Both methods need to be validated for
specific application cases.

Research issue 4: standards for Digital Twin

Though anyone can develop a Digital Twin solution using common
technologies, standards will facilitate the longevity of a Digital Twin
solution. Standard-compatible Digital Twin solutions can inherit the
flexibility, interoperability and scalability of existing and new standards
for information model and communication protocols. This is especially
important when a Digital Twin will be deployed in an open network of
Digital Twins. Recognizing the need for standardization, ISO is actively
developing a dedicated standard for Digital Twin manufacturing [9].

Research issue 5: functionalities of a Digital Twin

Existing Digital Twin applications are mainly developed for mon-
itoring and prediction purposes and used as decision-making support
applications for humans. Though human involvement in the smart
manufacturing environment is essential, direct/autonomous feedback
control from the Digital Twin to the physical world should be
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Fig. 8. Digital Twin for rotating machinery fault diagnosis [66].
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developed. Hence, the Digital Twin application can endow the physical
objects with a certain degree of autonomy.

Research issue 6: Digital Twin model version management

A Digital Twin model can evolve over time as a result of engineering
changes to its physical counterpart, changes to the modelling interests
throughout the lifecycle of the physical counterpart, or other cases. In
these cases, the different versions of a Digital Twin models over time
should be captured, stored and integrated. Snapshot-based and change-
based version management principles can be applied for the effective
management different versions of a Digital Twin model.

Research issue 7: humans in Digital Twin applications

Humans play an important role in the Digital Twin-driven smart
manufacturing environment. While some low-level operations can be
autonomously achieved without human intervention, many decision-
making activities have to be performed by humans. Though some new
interaction technologies such as AR have been studied and im-
plemented in a manufacturing environment to improve human-machine
interactions, humans are still not considered as an integral part of the
smart manufacturing system. Significant research effort needs to be
made on the topic of Digital Twin for people in the smart manufacturing
environment in the future.
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7. Conclusions

This paper presents the current status and advancement of Digital
Twin-driven smart manufacturing. The core concept, reference model,
enabling technologies, application scenarios, and research issues of
Digital Twin-driven smart manufacturing are discussed in detail.

With the rapid growth of integrating information technologies and
operation technologies in the industry, significant efforts have been
made to make manufacturing smart. As a core element of future man-
ufacturing, Digital Twin-driven applications are going to challenge and
change the fundamentals of manufacturing systems and operations. The
convergence of the digital world and physical world enables smart
decisions to be made at every single point of manufacturing operations,
thus can foster a data-driven smart manufacturing environment.

As can be seen from the literature, nearly 500 articles related to
Digital Twin in the engineering domain have been published since
2016, and the number is proliferating, together with huge interest from
the industry. R&D in this area needs to follow a common reference
model. The authors believe that constructing a Digital Twin needs a
standardized information model, high-performance data processing,
and industrial communications to work together. Existing standards in
the manufacturing and industrial control domain need to be used where
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appropriate. The dedicated standard for Digital Twin smart manu-
facturing being developed by ISO can be the starting point for con-
solidating research efforts in this space.

The research activities are going to stay active due to the challen-

ging issues of constructing a reliable Digital Twin in practice. This is
especially true for manufacturing applications, which pose stringent
requirements on timeliness, accuracy, and reliability. The authors be-
lieve researches on standards, communication protocols, time-sensitive
data processing, and reliability need to be the priorities for the next
stage of the research while focusing on application scenarios of Digital
Twin.
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