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1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. The rise of NoSQL systems and languages . . . . . . . . . . 1

1.1.2. Overview of NoSQL concepts . . . . . . . . . . . . . . . . . 4

1.1.3. Current trends of French research in NoSQL

languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Join implementations on top of MapReduce . . . . . . . . . . . 7

1.3. Models for NoSQL languages and systems . . . . . . . . . . . . 12

1.4. New challenges for database research . . . . . . . . . . . . . . . 16

1.5. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2. Distributed SPARQL Query Processing:
a Case Study with Apache Spark . . . . . . . . . . . . . . . . . . . 21

Bernd AMANN, Olivier CURÉ and Hubert NAACKE

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2. RDF and SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1. RDF framework and data model . . . . . . . . . . . . . . . . 22

2.2.2. SPARQL query language . . . . . . . . . . . . . . . . . . . . 25



vi NoSQL Data Models

2.3. SPARQL query processing . . . . . . . . . . . . . . . . . . . . . 29

2.3.1. SPARQL with and without RDF/S entailment . . . . . . . . 29

2.3.2. Query optimization . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3. Triple store systems . . . . . . . . . . . . . . . . . . . . . . . 33

2.4. SPARQL and MapReduce . . . . . . . . . . . . . . . . . . . . . 34

2.4.1. MapReduce-based SPARQL processing . . . . . . . . . . . . 35

2.4.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5. SPARQL on Apache Spark . . . . . . . . . . . . . . . . . . . . . 41

2.5.1. Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2. SPARQL on Spark . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3. Experimental evaluation . . . . . . . . . . . . . . . . . . . . 48

2.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3. Doing Web Data: from Dataset
Recommendation to Data Linking . . . . . . . . . . . . . . . . . . 57

Manel ACHICHI, Mohamed BEN ELLEFI, Zohra BELLAHSENE and

Konstantin TODOROV

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1. The Semantic Web vision . . . . . . . . . . . . . . . . . . . . 57

3.1.2. Linked data life cycles . . . . . . . . . . . . . . . . . . . . . 58

3.1.3. Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2. Datasets recommendation for data linking . . . . . . . . . . . . 62

3.2.1. Process definition . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.2. Dataset recommendation for data linking based

on a Semantic Web index . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3. Dataset recommendation for data linking based

on social networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4. Dataset recommendation for data linking based

on domain-specific keywords . . . . . . . . . . . . . . . . . . . . . 65

3.2.5. Dataset recommendation for data linking based

on topic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.6. Dataset recommendation for data linking based

on topic profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.7. Dataset recommendation for data linking based

on intensional profiling . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.8. Discussion on dataset recommendation approaches . . . . . 68

3.3. Challenges of linking data . . . . . . . . . . . . . . . . . . . . . 69

3.3.1. Value dimension . . . . . . . . . . . . . . . . . . . . . . . . . 70



Contents vii

3.3.2. Ontological dimension . . . . . . . . . . . . . . . . . . . . . 74

3.3.3. Logical dimension . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4. Techniques applied to the data linking process . . . . . . . . . . 78

3.4.1. Data linking techniques . . . . . . . . . . . . . . . . . . . . . 79

3.4.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 4. Big Data Integration in Cloud Environments:
Requirements, Solutions and Challenges . . . . . . . . . . . . . 93

Rami SELLAMI and Bruno DEFUDE

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2. Big Data integration requirements in Cloud

environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3. Automatic data store selection and discovery . . . . . . . . . . . 99

4.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.2. Model-based approaches . . . . . . . . . . . . . . . . . . . . 99

4.3.3. Matching-oriented approaches . . . . . . . . . . . . . . . . . 100

4.3.4. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4. Unique access for all data stores . . . . . . . . . . . . . . . . . . 103

4.4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2. ODBAPI: a unified REST API for relational

and NoSQL data stores . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.3. Other works . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.4. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5. Unified data model and query languages . . . . . . . . . . . . . 108

4.5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2. Data models of classical data integration

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.3. A global schema to unify the view over relational

and NoSQL data stores . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.4. Other works . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.5. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6. Query processing and optimization . . . . . . . . . . . . . . . . 118

4.6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.2. Federated query language approaches . . . . . . . . . . . . . 118

4.6.3. Integrated query language approaches . . . . . . . . . . . . . 121

4.6.4. Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



viii NoSQL Data Models

4.7. Summary and open issues . . . . . . . . . . . . . . . . . . . . . . 125

4.7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7.2. Open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 5. Querying RDF Data: a
Multigraph-based Approach . . . . . . . . . . . . . . . . . . . . . . 135

Vijay INGALALLI, Dino IENCO and Pascal PONCELET

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3. Background and preliminaries . . . . . . . . . . . . . . . . . . . 137

5.3.1. RDF data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2. SPARQL query . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.3. SPARQL querying by adopting multigraph

homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4. AMBER: a SPARQL querying engine . . . . . . . . . . . . . . . 143

5.5. Index construction . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5.1. Attribute index . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5.2. Vertex signature index . . . . . . . . . . . . . . . . . . . . . . 145

5.5.3. Vertex neighborhood index . . . . . . . . . . . . . . . . . . . 148

5.6. Query matching procedure . . . . . . . . . . . . . . . . . . . . . 149

5.6.1. Vertex-level processing . . . . . . . . . . . . . . . . . . . . . 151

5.6.2. Processing satellite vertices . . . . . . . . . . . . . . . . . . . 152

5.6.3. Arbitrary query processing . . . . . . . . . . . . . . . . . . . 154

5.7. Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . 159

5.7.1. Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 159

5.7.2. Workload generation . . . . . . . . . . . . . . . . . . . . . . 160

5.7.3. Comparison with RDF engines . . . . . . . . . . . . . . . . . 161

5.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.9. Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.10. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 6. Fuzzy Preference Queries to NoSQL Graph
Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Arnaud CASTELLTORT, Anne LAURENT, Olivier PIVERT,

Olfa SLAMA and Virginie THION

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.2. Preliminary statements . . . . . . . . . . . . . . . . . . . . . . . 168



Contents ix

6.2.1. Graph databases . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.2. Fuzzy set theory . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3. Fuzzy preference queries over graph databases . . . . . . . . . . 176

6.3.1. Fuzzy preference queries over crisp graph

databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3.2. Fuzzy preference queries over fuzzy graph

databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4. Implementation challenges . . . . . . . . . . . . . . . . . . . . . 193

6.4.1. Modeling fuzzy databases . . . . . . . . . . . . . . . . . . . 193

6.4.2. Evaluation of queries with fuzzy preferences . . . . . . . . . 193

6.4.3. Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.5. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.6. Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . 198

6.7. Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.8. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 7. Relevant Filtering in a Distributed Content-based
Publish/Subscribe System . . . . . . . . . . . . . . . . . . . . . . . 203

Cédric DU MOUZA and Nicolas TRAVERS

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.2. Related work: novelty and diversity filtering . . . . . . . . . . . 205

7.3. A Publish/Subscribe data model . . . . . . . . . . . . . . . . . . 206

7.3.1. Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.3.2. Weighting terms in textual data flows . . . . . . . . . . . . . 207

7.4. Publish/Subscribe relevance . . . . . . . . . . . . . . . . . . . . 208

7.4.1. Items and histories . . . . . . . . . . . . . . . . . . . . . . . . 208

7.4.2. Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4.3. Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.4.4. An overview of the filtering process . . . . . . . . . . . . . . 210

7.4.5. Choices of relevance . . . . . . . . . . . . . . . . . . . . . . 210

7.5. Real-time integration of novelty and diversity . . . . . . . . . . 212

7.5.1. Centralized implementation . . . . . . . . . . . . . . . . . . 212

7.5.2. Distributed filtering . . . . . . . . . . . . . . . . . . . . . . . 216

7.6. TDV updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.6.1. TDV computation techniques . . . . . . . . . . . . . . . . . . 221

7.6.2. Incremental approach . . . . . . . . . . . . . . . . . . . . . . 223

7.6.3. TDV in a distributed environment . . . . . . . . . . . . . . . 225



x NoSQL Data Models

7.7. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.7.1. Implementation and description of datasets . . . . . . . . . . 229

7.7.2. TDV updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.7.3. Filtering rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.7.4. Performance evaluation in the centralized

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

7.7.5. Performance evaluation in a distributed

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

7.7.6. Quality of filtering . . . . . . . . . . . . . . . . . . . . . . . . 240

7.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

7.9. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



Foreword

This volume is part of a series entitled Database and Big Data, or DB &

BD for short, whose content is motivated by the radical and rapid evolution

(not to say revolution) of database systems during the last decade.

Indeed, since the 1970s, inspired by the relational database model, many

research topics have emerged in the database community, such as, just to cite

a few, Deductive Databases, Object-Oriented Databases, Semi-Structured

Databases, Resource Description Framework (RDF), Open Data, Linked

Data, Data Warehouses, Data Mining, and more recently, Cloud Computing,

NoSQL and Big Data. Currently, the last three issues are becoming

increasingly important and attract the most research efforts in the domain of

databases.

Consequently, considering that Big Data environments are now to be

handled in most current applications, the goal of this series is to address some

of the latest issues in such environments. By doing so, while reporting on

specific recent research results, we aim to provide readers with evidence that

database technology is significantly changing, so as to face important

challenges encountered in the majority of these applications.

More precisely, although relational databases are still commonly used in

traditional applications, it is clear that most current Big Data applications

cannot be handled by Relational DataBase Management Systems (RDBMSs),

mainly because of the following reasons:

– there is a strong need to consider heterogeneous, structured, semi-

structured or even unstructured data, for which no common schema exists.
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RBMSs are not flexible enough to handle such variety of data, because these

database systems were designed for handling tabular data;

– efficiency when facing Big Data in a distributed and replicated

environment is now a key issue that RDBMSs fail to achieve, in particular

when it comes to combining large tables.

New database systems have been proposed during the past few years, which

are known under the generic term NoSQL Databases. These systems aim to

solve the previous two points, and all claim to achieve their goal.

However, these systems need to be investigated further, because some

important issues remain open (semantics of data, constraint satisfaction,

transaction processing, privacy preservation, optimization, etc.). The volumes

of this series aim to address some of these challenging issues and to present

some of the most recent research results in this field.

Considering that the numerous currently available proposals are based on

various concepts and data models (column-based, text-based, graph or hyper

graph-based), this volume addresses issues related to trends and challenges

related to NoSQL data models.

Anne LAURENT

Dominique LAURENT



Preface

As is well known, a major event in the field of data management was the

introduction of the relational model by Codd in the early 1970s, which laid the

foundations for a genuine theory of databases. After a somewhat slow start, due

to the important Research and Development effort necessary to define efficient

systems, relational database management systems reigned supreme for several

decades.

However, around the end of the 20th Century, several phenomena modified

the data management landscape. First, new types of applications in several

domains were introduced to handle data for which the relational model

appeared inadequate or inefficient. Typical examples are semi-structured data
on the one hand, and graphs on the other (social networks, bibliographic

databases, cartographic databases, genomic data, etc.) for which specific

models and systems had to be designed. Second, a major event was the rise of

the Semantic Web whose aim is, according to the W3C, to “provide a

common framework that allows data to be shared and reused across

application, enterprise and community boundaries”. The Semantic Web uses

models and languages specifically designed for linked data, which facilitate

automated reasoning on such data. Besides, the amount of useful data in some

application domains has become so huge that it cannot be stored or processed

by traditional database solutions. This latter phenomenon is commonly

referred to as Big Data. In terms of database technology, as a response to

these new needs, we have seen the appearance of what have come to be called

NoSQL databases.
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The term NoSQL was coined by Carlo Strozzi in 1998, who designed a

relational database system without SQL implementation and named it Strozzi

NoSQL. However, this system is distinct from the circa-2009 general concept

of NoSQL databases, which are typically non-relational. Many data models

have been proposed: key-value stores, document stores (key-value stores that

restrict values to semi-structured formats such as JSON), wide column stores,

RDF, graph databases, XML, etc1.

While the management of large volumes of data has always been subject

to many research efforts, recent results in both the distributed systems and

database communities have led to an important renewal of interest in this

topic. Large scale distributed file systems such as Google File System2 and

parallel processing paradigm/environments such as MapReduce3 have been

the foundation of a new ecosystem with data management contributions in

major database conferences and journals. Different (often open-source)

systems have been released, such as Pig4, Hive5 or, more recently, Spark6 and

Flink7, making it easier to use data center resources to manage Big Data.

However, many research challenges remain, related, for instance, to system

efficiency, and query language expressiveness and flexibility.

This book presents a sample of recent works by French research teams

active in this domain. As the reader will see, it covers various aspects of

NoSQL research, from semantic data management to graph databases, as well

1 GESSERT F., WOLFRAM W. FRIEDRICH S., “NoSQL database systems: a survey and

decision guidance”, Computer Science - R&D, vol. 32, nos 3–4, pp. 353–365, 2017.

2 GHEMAWAT S., GOBIOFF H., LEUNG S.-T., Proceedings of the Symposium on Operating
Systems Principles (SOSP), Bolton Landing, USA, pp. 29–43, 2003.

3 DEAN J., GHEMAWAT S., “MapReduce: simplified data processing on large clusters”,

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

4 OLSTON C., REED B., SRIVASTAVA U. et al., “Pig latin: a not-so-foreign language for data

processing”, Proceedings of the SIGMOD International Conference on Management of Data,

Vancouver, Canada, pp. 1099–1110, 2008.

5 THUSOO A., SARMA J.S., JAIN N. et al., “Hive – a petabyte scale data warehouse using

Hadoop”, Proceedings of the International Conference on Data Engineering (ICDE), Long

Beach, USA, pp. 996–1005, 2010.

6 ZAHARIA M., CHOWDHURY M., DAS T. et al., “Resilient distributed datasets: a fault-

tolerant abstraction for in-memory cluster computing”, Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), San Jose, USA, pp. 15–28, 2012.

7 CARBONE P., KATSIFODIMOS A., EWEN S. et al., “Apache Flink: Stream and Batch

Processing in a Single Engine”, IEEE Data Engineering Bulletin, vol. 4, pp. 28–38, 2015.
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as Big Data management in cloud environments, dealing with data models,

query languages and implementation issues. The book is organized as

follows:

Chapter 1, by Kim Nguyễn, from LRI and the University of Paris-Sud,

presents an overview of NoSQL languages and systems. The author

highlights some of the technical aspects of NoSQL systems (in particular,

distributed computation with MapReduce) before discussing current research

trends: join implementations on top of MapReduce, models for NoSQL

languages and systems, and the perspective that consists of defining a formal

model of NoSQL databases and queries.

Chapter 2, entitled “Distributed SPARQL Query Processing: A Case

Study with Apache SPARK”, by Bernd Amann, Olivier Curé and Hubert

Naacke, from the LIP6 laboratory in Paris, is devoted to the issue of

evaluating SPARQL queries over large RDF datasets. The authors present a

solution that consists of using the MapReduce framework to process

SPARQL graph patterns and show how the general purpose cluster computing

platform Apache Spark can be used to this end. They emphasize the

importance of the physical data layer for query evaluation efficiency and show

that hybrid query plans combining partitioned and broadcast joins improve

query performances in almost all cases.

Chapter 3, authored by Manel Achichi, Mohamed Ben Ellefi, Zohra

Bellahsene and Konstantin Todorov, from the LIRMM laboratory in

Montpellier, is entitled “Doing Web Data: From Dataset Recommendation to

Data Linking”. It deals with the production of web data and focuses on the

data linking stage, seen as an operation which generates a set of links between

two different datasets. The authors first study the prior task which consists of

discovering relevant datasets leading to the identification of similar resources

to support the data linking issue. They provide an overview of

recommendation approaches for candidate datasets, then present and classify

the different techniques that are applied by the currently available data linking

tools. The main challenge faced by all of these techniques is to overcome

different heterogeneity problems that may occur between the considered

datasets, such as differences in descriptions at different levels (value,

ontological or logical) in order to compare the resources efficiently, and the

authors show that further research efforts are still needed to better cope with

these heterogeneity issues.
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Chapter 4, entitled “Big Data Integration in Cloud Environments:

Requirements, Solutions and Challenges”, by Rami Sellami and Bruno

Defude, from CETIC Charleroi and Telecom SudParis respectively, presents

and discusses the requirements of Big Data integration in cloud environments.

In such a context, applications may need to interact with several

heterogeneous data stores, depending on the types of data they have to

manage (traditional data, documents, graph data from social networks, simple

key-value data, etc.). A first constraint is that, to make these interactions

possible, programmers have to be familiar with different APIs. A second

difficulty is that the execution of complex queries over heterogeneous data

models cannot currently be achieved in a declarative way and therefore

requires extra implementation efforts. Moreover, cloud discovery as well as

application deployment and execution are generally performed manually by

programmers. The authors analyze and discuss the current state-of-the-art

regarding four requirements (automatic data stores selection and discovery,

unique access for all data stores, transparent access for all data stores, global

query processing and optimization), provide a global synthesis according to

three groups of criteria, and highlight important challenges that remain to be

tackled.

Chapter 5 is authored by Vijay Ingalalli, Dino Ienco and Pascal Poncelet,

from the LIRMM laboratory in Montpellier, and is entitled “Querying RDF

Data: A Multigraph-based Approach”. In this chapter, the authors cope with

two challenges faced by the RDF data management community: first,

automatically generated queries cannot be bounded in their structural

complexity and size; second, the queries generated by retrieval systems (or

any other application) need to be efficiently answered in a reasonable amount

of time. In order to address these challenges, the authors advocate an

approach to RDF query processing that involves two steps: an offline step

where the RDF database is transformed into a multigraph and indexed, and an

online step where the SPARQL query is transformed into a multigraph too,

which makes query processing boil down to a subgraph homomorphism

problem. An RDF query engine based on this strategy is presented, named

AMBER, which exploits structural properties of the multigraph query as well

as the indices previously built on the multigraph structure.

Chapter 6 is entitled “Fuzzy Preference Queries to NoSQL Graph

Databases” and is authored by Arnaud Castelltort, Anne Laurent, Olivier

Pivert, Olfa Slama and Virginie Thion; the first two authors being affiliated to
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the LIRMM laboratory in Montpellier, and the last three authors to the IRISA

laboratory in Lannion. This chapter deals with flexible querying of graph

databases that may involve gradual relationships. The authors first introduce

an extension of attributed graphs where edges may represent a fuzzy concept

(such as friend in the case of a social network, or co-author in the case of a

bibliographic database). Then, they describe an extension of the query

language Cypher that makes it possible to express fuzzy requirements, both

on attribute values and on structural aspects of the graph (such as the length

or the strength of a path). Finally, they deal with implementation issues and

outline a query processing strategy based on the derivation of a regular

Cypher query from the fuzzy query to be evaluated, through an add-on built

on top of a classical graph database management system.

Finally, Chapter 7, by Cédric du Mouza and Nicolas Travers, from CNAM

Paris, is entitled “Relevant Filtering in a Distributed Content-based

Publish/Subscribe System”, and deals with textual data management. More

precisely, it considers a crucial challenge faced by Publish/Subscribe systems,

which is to efficiently filter feeds’ information in real time. Publish/Subscribe

systems make it possible to subscribe to flows of items coming from diverse

sources and notify the users according to their interests, but the existing

systems hardly address the issue of document relevance. However, numerous

sources may provide similar information, or a new piece of information may

be “hidden” in a large flow. The authors introduce a real-time filtering process

based on relevance that notably integrates the notions of novelty and diversity,

and they show how this filtering process can be efficiently implemented in a

NoSQL environment.

Olivier PIVERT

May 2018
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NoSQL Languages and Systems

1.1. Introduction

1.1.1. The rise of NoSQL systems and languages

Managing, querying and making sense of data have become major aspects

of our society. In the past 40 years, advances in technology have allowed

computer systems to store vast amounts of data. For the better part of this

period, relational database management systems (RDBMS) have reigned

supreme, almost unchallenged, in their role of sole keepers of our data sets.

RDBMS owe their success to several key factors. First, they stand on very

solid theoretical foundations, namely the relational algebra introduced by

Edgar F. Codd [COD 70], which gave a clear framework to express, in

rigorous terms, the limit of systems, their soundness and even their efficiency.

Second, RDBMS used one of the most natural representations to model data:

tables. Indeed, tables of various sorts have been used since antiquity to

represent scales, account ledgers, and so on. Third, a domain-specific

language, SQL, was introduced almost immediately to relieve the database

user from the burden of low-level programming. Its syntax was designed to

be close to natural language, already highlighting an important aspect of data

manipulation: people who can best make sense of data are not necessarily

computer experts, and vice versa. Finally, in sharp contrast to the high level of

data presentation and programming interface, RDBMS have always thrived to
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offer the best possible performances for a given piece of hardware, while at

the same time ensuring consistency of the stored data at all times.

At the turn of the year 2000 with the advances in high speed and mobile

networks, and the increase in storage and computing capacity, the amount of

data produced by humans became massive, and new usages were discovered

that were impractical previously. This increase in both data volumes and

computing power gave rise to two distinct but related concepts: “Cloud

Computing” and “Big Data”. Broadly speaking, the Cloud Computing

paradigm consists of having data processing performed remotely in data

centers (which collectively form the so-called cloud) and having end-user

devices serve as terminals for information display and input. Data is accessed

on demand and continuously updated. The umbrella term “Big Data”

characterizes data sets with the so-called three “V”s [LAN 01]: Volume,

Variety and Velocity. More precisely, “Big Data” data sets must be large (at

least several terabytes), heterogeneous (containing both structured and

unstructured textual data, as well as media files), and produced and processed

at high speed. The concepts of both Cloud Computing and Big Data

intermingle. The sheer size of the data sets requires some form of distribution

(at least at the architecture if not at the logical level), preventing it from being

stored close to the end-user. Having data stored remotely in a distributed

fashion means the only realistic way of extracting information from it is to

execute computation close to the data (i.e. remotely) to only retrieve the

fraction that is relevant to the end-user. Finally, the ubiquity of literally

billions of connected end-points that continuously capture various inputs feed

the ever growing data sets.

In this setting, RDBMS, which were the be-all and end-all of data

management, could not cope with these new usages. In particular, the

so-called ACID (Atomicity, Consistency, Isolation and Durability) properties

enjoyed by RDBMS transactions since their inception (IBM Information

Management System already supported ACID transactions in 1973) proved

too great a burden in the context of massively distributed and frequently

updated data sets, and therefore more and more data started to be stored

outside of RDBMS, in massively distributed systems. In order to scale, these

systems traded the ACID properties for performance. A milestone in this area

was the MapReduce paradigm introduced by Google engineers in 2004

[DEA 04]. This programming model consists of decomposing a high-level

data operation into two phases, namely the map phase where the data is

transformed locally on each node of the distributed system where it resides,
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and the reduce phase where the outputs of the map phase are exchanged and

migrated between nodes according to a partition key – all groups with the

same key being migrated to the same (set of) nodes – and where an

aggregation of the group is performed. Interestingly, such low-level

operations where known both from the functional programming language

community (usually under the name map and fold) and from the database

community where the map phase can be used to implement selection and

projection, and the reduce phase roughly corresponds to aggregation,

grouping and ordering.

At the same time as the Big Data systems became prevalent, the so-called

CAP theorem was conjectured [BRE 00] and proved [GIL 02]. In a nutshell,

this formal result states that no distributed data store can ensure, at the same

time, optimal Consistency, Availability and Partition tolerance. In the context

of distributed data stores, consistency is the guarantee that a read operation

will return the result of the most recent global write to the system (or an

error). Availability is the property that every request receives a response that

is not an error (however, the answer can be outdated). Finally, partition
tolerance is the ability for the system to remain responsive when part of its

components are isolated (due to network failures, for instance). In the context

of the CAP theorem, the ACID properties enjoyed by RDBMS consist of

favoring consistency over availability. With the rise of Big Data and

associated applications, new systems emerged that favored availability over

consistency. Such systems follow the BASE principles (Basically Available,

Soft state and Eventual consistency). The basic tenets of the approach is that

operations on the systems (queries as well as updates) must be as fast as

possible and therefore no global synchronization between nodes of the system

should occur at the time of operation. This, in turn, implies that after an

operation, the system may be in an inconsistent state (where several nodes

have different views of the global data set). The system is only required to

eventually correct this inconsistency (the resolution method is part of the

system design and varies from system to system). The wide design space in

that central aspect of implementation gave rise to a large number of systems,

each having its own programming interface. Such systems are often referred

to with the umbrella term Not only SQL (NoSQL). While, generally speaking,

NoSQL can also characterize XML databases and Graph databases, these

define their own field of research. We therefore focus our study on various

kinds of lower-level data stores.
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1.1.2. Overview of NoSQL concepts

Before discussing the current trends in research on NoSQL languages and

systems, it is important to highlight some of the technical concepts of such

systems. In fact, it is their departure from well understood relational traits that

fostered new research and development in this area. The aspects which we

focus on are mainly centered around computational paradigms and data

models.

1.1.2.1. Distributed computations with MapReduce

As explained previously, the MapReduce paradigm consists of

decomposing a generic, high-level computation into a sequence of

lower-level, distributed, map and reduce operations. Assuming some data

elements are distributed over several nodes, the map operation is applied to

each element individually, locally on the node where the element resides.

When applied to such an element e, the map function may decide to either

discard it (by not returning any result) or transform it into a new element e′, to

which is associated a grouping key, k, thus returning the pair (k, e′). More

generally, given some input, the map operation may output any number of

key-value pairs. At the end of the map phase, output pairs are exchanged

between nodes so that pairs with the same key are grouped on the same node

of the distributed cluster. This phase is commonly referred to as the shuffle
phase. Finally, the reduce function is called once for each distinct key value,

and takes as input a pair (k, [e′1, . . . , e′n]) of a key and all the outputs of the

map function that were associated with that key. The reduce function can then

either discard its input or perform an operation on the set of values to

compute a partial result of the transformation (e.g. by aggregating the

elements in its input). The result of the reduce function is a pair (k′, r) of an

output key k′ and a result r. The results are then returned to the user, sorted

according to the k′ key. The user may choose to feed such a result to a new

pair of map/reduce functions to perform further computations. The whole

MapReduce process is shown in Figure 1.1.

This basic processing can be optimized if the operation computed by the

reduce phase is associative and commutative. Indeed, in such a case, it is

possible to start the reduce operations on subsets of values present locally on

nodes after the map phase, before running the shuffle phase. Such an

operation is usually called a combine operation. In some cases, it can

drastically improve performance since it reduces the amount of data moved
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around during the shuffle phase. This optimization works particularly well in

practice since the reduce operations are often aggregates which enjoy the

commutativity and associativity properties (e.g. sum and average).

Figure 1.1. MapReduce

The most commonly used MapReduce implementation is certainly the

Apache Hadoop framework [WHI 15]. This framework provides a Java API

to the programmer, allowing us to express map and reduce transformations as

Java methods. The framework heavily relies on the Hadoop Distributed File

System (HDFS) as an abstraction for data exchange. The map and reduce

transformations just read their input and write their output to the file system,

which handle the lower-level aspects of distributing chunks of the files to the

components of the clusters, and handle failures of nodes and replication of

data.
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1.1.2.2. NoSQL databases

A common trait of the most popular NoSQL databases in use is their

nature as key-value stores. A key-value store is a database where collections

are inherently dictionaries in which each entry is associated with a key that is

unique to the collection. While it seems similar to a relational database where

tables may have primary keys, key-value stores differ in a fundamental way

from relational tables in that they do not rely on – nor enforce – a fixed

schema for a given collection. Another striking aspect of all these databases is

the relatively small set of operations that is supported natively. Updates are

usually performed one element at a time (using the key to denote the element

to be added, modified or deleted). Data processing operations generally

consist of filtering, aggregation and grouping and exposing a MapReduce-like

interface. Interestingly, most NoSQL databases do not support join

operations, rather they rely on data denormalization (or materialized joins) to

achieve similar results, at the cost of more storage usage and more

maintenance effort. Finally, some databases expose a high-level, user-friendly

query language (sometimes using an SQL compatible syntax) where queries

are translated into combinations of lower-level operations.

1.1.3. Current trends of French research in NoSQL languages

NoSQL database research covers several domains of computer science,

from system programming, networking and distributed algorithms, to

databases and programming languages. We focus our study on the language
aspect of NoSQL systems, and highlight two main trends in French research

that pertains to NoSQL languages and systems.

The first trend aims to add support for well-known, relational operations to

NoSQL databases. In particular, we survey the extensive body of work that

has been done to add support for join operations between collections stored in

NoSQL databases. We first describe how join operations are implemented in

NoSQL systems (and in particular how joins can be decomposed into

sequences of MapReduce operations).

The second trend of research is aimed at unifying NoSQL systems, in

particular their query languages. Indeed, current applications routinely

interact with several data stores (both relational and NoSQL), using high-level

programming languages (PHP, Java, Ruby or JavaScript for Web applications,
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Python and R for data analytics, etc.). We will survey some of the most

advanced work in the area, particularly the definition of common,

intermediate query language that can map to various data stores.

1.2. Join implementations on top of MapReduce

While NoSQL databases generally support a more flexible data model than

relational ones, many users of NoSQL databases still use a somewhat flat and

homogeneous encoding of data (i.e. what is stored in NoSQL databases is still

mostly relational tables). In this respect, the join operation is still of paramount

importance. Indeed, although denormalization is possible, it increases the cost

of writing to the database (since the join must be maintained) and furthermore,

such writes may leave the system inconsistent for a while (since, in general, no

notion of transaction exists in NoSQL databases). As a result, a large body of

work has been done recently to compute joins effectively on top of MapReduce

primitives.

Before exploring some of the most prevalent work in this area, we recall

the definition of the join operator. Let R and S be two collections1, the join

operation between R and S is defined as:

R ��θ S = {(r, s) | r ∈ R, s ∈ S ∧ θ(r, s)},
where θ is a Boolean predicate over r and s called the join condition. When θ is

an equality condition between (parts of) r and s, the join is called an equijoin.

Joins can be generalized to an arbitrary number of collections (n-way joins)

and several variations of the basic join operator exist.

A straightforward way to implement joins is the so-called nested loop:

which iterates over all r elements in R, and for each r, performs an iteration

over all s elements in S, and tests whether θ(r, s) holds (for instance, see

[RAM 03], Chapter 14). While this technique is often used by relational

databases to evaluate joins, it cannot be used in the context of a MapReduce

evaluation, since it is impossible to iterate over the whole collection (which is

distributed over several nodes). In the context of equijoins, however, a

distributed solution can be devised easily and is given in Algorithm 1.1.

1 Since the system at hand is not one of relational databases, we use the broad term “collection”

rather than relation.
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Algorithm 1.1. Reduce-side join

1:

2: function MAP(Element elem, String origin)

3: OUTPUT(Hash(elem), (elem, origin))

4:

5:

6: function REDUCE(Integer key, List(Element,String) elems)

7: l1 ← {e | (e, "R") ∈ elems}
8: l2 ← {e | (e, "S") ∈ elems}
9: for all r ∈ l1 do

10: for all s ∈ l2 do
11: if θ(r, s) then
12: OUTPUT(r, s)

To perform the join, we assume that the MAP function is applied to each

element of either collection, together with a tag indicating its origin (a simple

string with the name of the collection, for instance). The MAP function outputs

a pair of a key and the original element and its origin. The key must be the result

of a hashing (or partition) function that is compatible with the θ condition of

the join, that is:

θ(r, s) ⇒ Hash(r) = Hash(s).

During the shuffle phase of the MapReduce process, the elements are

exchanged between nodes and all elements yielding the same hash value end

up on the same node. The REDUCE function is then called on the key (the

hash value) and the sequence of all elements that have this key. It then

separates this input sequence with respect to the origin of the elements and

can perform, on these two sequences, a nested loop to compute the join. This

straightforward scheme is reminiscent of the Hash Join (e.g. see [RAM 03],

Chapter 14) used in RDBMS. It suffers however from two drawbacks. The

first is that it requires a hashing function that is compatible with the θ
condition, which may prove difficult for conditions other than equality.
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Second, and more importantly, the cost of data exchange in the shuffle phase

may be prohibitive. These two drawbacks have given rise to a lot of research

in recent years. A first area of research is to reduce the data exchange by

filtering bad join candidates early, during the map phase. The second area is

to develop ad-hoc MapReduce implementations for particular joins (where

the particular semantics of the θ condition is used).

In [PHA 16] and [PHA 14], Phan et al. reviewed and extended the state of

the art on filter-based joins. Filter-based joins discard non-joinable tuples

early by using Bloom filters (named after their inventor, Burton H. Bloom

[BLO 70]). A Bloom filter is a compact data structure that soundly

approximates a set interface. Given a set S of elements and a Bloom filter F
constructed from S, the Bloom filter can tell whether an element e is not part

of the set or if it is present with a high probability, that is, the Bloom filter F
is sound (it will never answer that an element not in S belongs to F ) but not

complete (an element present in F may be absent from S). The advantage of

Bloom filters is their great compactness and small query time (which is a

fixed parameter k that only depends on the precision of the filter, and not on

the number of elements stored in it). The work of Phan et al. extends existing

approaches by introducing intersection filter-based joins in which Bloom

filters are used to compute equijoins (as well as other related operators such

as semi-joins). Their technique consists of two phases. Given two collections

R and S that must be joined on a common attribute x, a first pre-processing

phase projects each collection on attribute x, collects both results in two

Bloom filters FRx and FSx and computes the intersection filter

Fx = FRx ∩ FSx which is very quick and easy. In practice, this filter is small

enough to be distributed to all nodes. In a second phase, computing the

distributed join, we may test during the map phase if the x attribute of the

given tuple is in Fx, and, if not, discard it from the join candidates early. Phan

et al. further extend their approach for multi-way joins and even recursive

joins (which compute the transitive closure of the joined relations). Finally,

they provide a complete cost analysis of their techniques, as well as others

that can be used as a foundation for a MapReduce-based optimizer (they take

particular care evaluating the cost of the initial pre-processing).

One reason why join algorithms may perform poorly is the presence of data
skew. Such bias may be due to the original data, e.g. when the join attribute is

not uniformly distributed, but may also be due to a bad distribution of the tuples

among the existing nodes of the cluster. This observation was made early on in
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the context of MapReduce-based joins by Hassan in his PhD thesis [ALH 09].

Hassan introduced special algorithms for a particular form of queries, namely

GroupBy-Join queries, or SQL queries of the form:

SELECT R.x,R.y, S.z, f(S.u)
FROM R,S
WHERE R.x = S.x
GROUP BY R.y,R.z

Hassan gives variants of the algorithm for the case where the joined on

attribute x is also part of the GROUP BY clause. While Hassan’s work

initially targeted distributed architectures, it was later adapted and specialized

to the MapReduce paradigm (e.g. see [ALH 15]). While a detailed description

of Hassan et al.’s algorithm (dubbed MRFAG-Join in their work) is outside of

the scope of this survey, we give a high-level overview of the concepts

involved. First, as for the reduce side join of Algorithm 1.1, the collections to

be joined are distributed over all the nodes, and each tuple is tagged with its

relation name. The algorithm then proceeds in three phases. The first phase

uses one MapReduce operation to compute local histograms for the x values

of R and S (recall that x is the joined on attribute). The histograms are local

in the sense that they only take into account the tuples that are present on a

given node. In the second phase, another MapReduce iteration is used to

circulate the local histograms among the nodes and compute a global

histogram of the frequencies of the pairs (R.x, S.x). While this step incurs

some data movements, histograms are merely a summary of the original data

and are therefore much smaller in size. Finally, based on the global

distribution that is known to all the nodes at the end of the second step, the

third step performs the join as usual. However, the information about the

global distribution is used cleverly in two ways: first, it makes it possible to

filter out join candidates that never occur (in this regard, the global histogram

plays the same role as the Bloom filter of Phan et al.); but second, the

distribution is also used to counteract any data skew that would be present and

distribute the set of sub-relations to be joined evenly among the nodes. In

practice, Hassan et al. showed that early filtering coupled with good load

balancing properties allowed their MRFAG-join algorithm to outperform the

default evaluation strategies of a state-of-the-art system by a factor of 10.

Improving joins over MapReduce is not limited to equijoins. Indeed, in

many cases, domain-specific information can be used to prune non-joinable

candidates early in the MapReduce process. For instance, in [PIL 16],
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Pilourdault et al. considered the problem of computing top-k temporal joins.

In the context of their work, relations R and S are joined over an attribute x
denoting a time interval. Furthermore, the join conditions involve high-level

time functions such as meet(R.x, S.x) (the R.x interval finishes exactly when

the S.x interval starts), overlaps(R.x, S.x) (the two interval intersects), and

so on. Finally, the time functions are not interpreted as Boolean predicates,

but rather as scoring functions, and the joins must return the top k scoring

pairs of intervals for a given time function. The solution which they adopt

consists of an initial offline, query-independent pre-processing step, followed

by two MapReduce phases that answer the query. The offline pre-processing

phase partitions the time into consecutive granules (time intervals), and

collects statistics over the distribution of the time intervals to be joined among

each granule. At query time, a first MapReduce process distributes the data

using the statistics computed in the pre-processing phase. In a nutshell,

granules are used as reducers’ input keys, which allows a reducer to process

all intervals that occurred during the same granule together. Second, bounds

for the scoring time function used in the query are computed and intervals

that have no chance of being in the top-k results are discarded early. Finally, a

final MapReduce step is used to compute the actual join among the reduced

set of candidates.

In the same spirit, Fang et al. considered the problem of nearest-neighbor

joins in [FAN 16]. The objects considered in this work are trajectories, that is,

sequences of triple (x, y, t) where (x, y) are coordinates in the Euclidean

plane and t a time stamp (indicating that a moving object was at position

(x, y) at a time t). The authors focus on k nearest-neighbor joins, that is,

given two sets of trajectories R and S, and find for each element of R, the set

of k closest trajectories of S. The solution proposed by the authors is similar

in spirit to the work of Pilourdault et al. on temporal joins. An initial

pre-processing step first partitions the time in discrete consecutive intervals

and then the space in rectangles. Trajectories are discretized and each is

associated with the list of time interval and rectangles it intersects. At query

time, the pair of an interval and rectangle is used as a partition key to assign

pieces of trajectories to reducers. Four MapReduce stages are used, the first

three collect statistics, perform early pruning of non-joinable objects and

distribution over nodes, and the last step is – as in previously presented

work – used to perform the join properly.
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Apart from the previously presented works which focus on binary joins

(and sometimes provide algorithms for ternary joins), Graux et al. studied the

problem of n-ary equijoins [GRA 16] in the context of SPARQL [PRU 08]

queries. SPARQL is the standard query language for the so-called semantic

Web. More precisely, SPARQL is a W3C standardized query language that

can query data expressed in the Resource Description Framework

(RDF) [W3C 14]. Informally, the RDF data are structured into the

so-called triples of a subject, a predicate and an object. These triples

allow facts about the World to be described. For instance, a triple

could be ("John", "lives in", "Paris") and another one could be

("Paris", "is in", "France"). Graux et al. focused on the query part of

SPARQL (which also allows new triple sets to be reconstructed). SPARQL

queries rely heavily on joins of triples. For instance, the query:

SELECT ?name ?town
WHERE {
?name "lives in" ?town .
?town "is in" "France"

}
returns the pair of the name of a person and the city they live in, for all cities

located in France (the “.” operator in the query acts as a conjunction). As we

can see, the more triples with free variables in the query, the more joins there

are to process. Graux et al. showed in their work how to efficiently store such

triple sets on a distributed file system and how to translate a subset of

SPARQL into Apache Spark code. While they use Spark’s built-in join

operator (which implements roughly the reduce side join of Algorithm 1.1),

Graux et al. made a clever use of statistics to find an optimal order for join

evaluations. This results in an implementation that outperforms both

state-of-the-art native SPARQL evaluators as well as other NoSQL-based

SPARQL implementations on popular SPARQL benchmarks. Finally, they

show how to extend their fragment of SPARQL with other operators such as

union.

1.3. Models for NoSQL languages and systems

A striking aspect of the NoSQL ecosystem is its diversity. Concerning data

stores, we find at least a dozen heavily used solutions (MongoDB, Apache

Cassandra, Apache HBase, Apache CouchDB, Redis, Microsoft CosmosDB

to name a few). Each of these solutions comes with its integrated query
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interface (some with high-level query languages, others with a low-level

operator API). But besides data store, we also find processing engines such as

Apache Hadoop (providing a MapReduce interface), Apache Spark (general

cluster computing) or Apache Flink (stream-oriented framework), and each of

these frameworks can target several of the aforementioned stores. This

diversity of solutions translates to ever more complex application code,

requiring careful and often brittle or inefficient abstractions to shield

application business logic from the specificities of every data store.

Reasoning about such programs, and in particular about their properties with

respect to data access has become much more complex. This state of affairs

has prompted a need for unifying approaches allowing us to target multiple

data stores uniformly.

A first solution is to consider SQL as the unifying query language. Indeed,

SQL is a well-known and established query language, and being able to query

NoSQL data stores with the SQL language seems natural. This is the solution

proposed by Curé et al. [CUR 11]. In this work, the database user queries a

“virtual relational database” which can be seen as a relational view of

different NoSQL stores. The approach consists of two complementary

components. The first one is a data mapping which describes which part of a

NoSQL data store is used to populate a virtual relation. The second is the

Bridge Query Language (BQL), an intermediate query representation that

bridges the gap between the high-level, declarative SQL, and the low-level

programming API exposed by various data stores. The BQL makes some

operations, such as iteration or sorting, explicit. In particular, BQL exposes a

foreach construct that is used to implement the SQL join operator (using

nested loops). A BQL program is then translated into the appropriate dialect.

In [CUR 11], the authors give two translations: one targeting MongoDB and

the other targeting Apache Cassandra, using their respective Java API.

While satisfactory from a design perspective, the solution of Curé et al.
may lead to sub-optimal query evaluation, in particular in the case of joins.

Indeed, in most frameworks (with the notable exception of Apache Spark),

performing a double nested loop to implement a join implies that the join is

actually performed on the client side of the application, that is, both

collections to be joined are retrieved from the data store and joined in main

memory. The most advanced contribution to date that provides not only a

unified query language and data model, but also a robust query planner is the

work of Kolev et al. on CloudMdsQL [KOL 16b]. At its heart, CloudMdsQL

is a query language based on SQL, which is extended in two ways. First, a
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CloudMdsQL program may reference a table from a NoSQL store using the

store’s native query language. Second, a CloudMdsQL program may contain

blocks of Python code that can either produce synthetic tables or be used as

user-defined functions (UDFs) to perform application logic. A programmer

may query several data stores using SELECT statements (the full range of

SQL’s SELECT syntax is supported, including joins, grouping, ordering and

windowing constructs) that can be arbitrarily nested. One of the main

contributions of Kolev et al. is a modular query planner that takes each data

store’s capability into account and furthermore provides some cross data store

optimizations. For instance, the planner may decide to use bind joins (see

[HAA 97]) to efficiently compute a join between two collections stored in

different data stores. With a bind join, rather than retrieving both collections

on the client side and performing the join in main memory, one of the

collections is migrated to the other data store where the join computation

takes place. Another example of optimization performed by the CloudMdsQL

planner is the rewriting of Python for each loops into plain database queries.

The CloudMdsQL approach is validated by a prototype and an extensive

benchmark [KOL 16a].

One aspect of CloudMdsQL that may still be improved is that even in such

a framework, reasoning about programs is still difficult. In particular,

CloudMdsQL is not so much a unified query language than the juxtaposition

of SQL’s SELECT statement, Python code and a myriad of ad-hoc foreign

expressions (since every data manipulation language can be used inside

quotations). A more unifying solution, from the point of view of the

intermediate query representation, is the Hop.js framework of Serrano et al.
[SER 16]. Hop.js is a multi-tier programming environment for Web

application. From a single JavaScript source file, the framework deduces both

the view (HTML code), the client code (client-side JavaScript code) and the

server code (server-side JavaScript code with database calls), as well as

automatically generating server/client communications in the form of

asynchronous HTTP requests. More precisely, in [COU 15], Serrano et al.
applied the work of Cheney et al. [CHE 13b, CHE 13a, CHE 14] on

language-integrated queries to Hop.js. In [COU 15], list comprehension is

used as a common query language to denote queries to different data stores.
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More precisely, borrowing the Array comprehension syntax2 of the

Ecmascript 2017 proposal, the author can write queries as:

[ for ( x of table )
if ( x.age >= 18 ) { name: x.name, age: x.age } ]

which mimics the mathematical notation of set comprehension:

{(x.name, x.age) | x ∈ Table ∧ x.age ≥ 18}

In this framework, joins may be written as nested for loops. However,

unlike the work of Curé et al., array comprehension is compiled into more

efficient operations if the target back-end supports them.

Despite their variety of data models, execution strategies and query

languages, NoSQL systems seem to agree on one point: their lack of support

for schema! As is well-known, the lack of schema is detrimental to both

readability and performance (for instance, see the experimental study of the

performance and readability impact of data modeling in MongoDB by Gómez

et al. [GÓM 16]). This might come as a surprise, database systems have a

long tradition of taking types seriously (from the schema and constraints of

RDBMS to the various schema standards for XML documents and the large

body of work on type-checking XML programs). To tackle this problem,

Benzaken et al. [BEN 13] proposed a core calculus of operators, dubbed

filters. Filters reuse previous work on semantic sub-typing (developed in the

context of static type checking of XML transformations [FRI 08]) and make it

possible to: (i) model NoSQL databases using regular types and extensible

records, (ii) give a formal semantics to NoSQL query languages and

(iii) perform type checking of queries and programs accessing data. In

particular, the work in [BEN 13] gives a formal semantics of the JaQL query

language (originally introduced in [BEY 11] and now part of IBM

BigInsights) as well as a precise type-checking algorithm for JaQL programs.

In essence, JaQL programs are expressed as sets of mutually recursive

functions and such functions are symbolically executed over the schema of

the data to compute an output type of the query. The filter calculus was

generic enough to encode not only JaQL but also MongoDB’s query language

(see [HUS 14]). One of the downsides of the filter approach, however, is that

2 Array comprehensions have been retired from EcmaScript2017 (ES8) standard.
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to be generic enough to express any kind of operator, filters rely on low-level

building blocks (such as recursive functions and pattern matching) which are

not well-suited for efficient evaluation.

1.4. New challenges for database research

Since their appearance at the turn of the year 2000, NoSQL databases have

become ubiquitous and collectively store a large amount of data. In contrast

with XML databases, which rose in popularity in the mid-1990s to settle on

specific, document-centric applications, it seems safe to assume that NoSQL

databases are here to stay, alongside relational ones. After a first decade of

fruitful research in several directions, it seems that it is now time to unify all

these research efforts.

First and foremost, in our sense, a formal model of NoSQL databases and

queries is yet to be defined. The model should play the same role that relational

algebra played as a foundation for SQL. This model should in particular allow

us to:

– describe the data-model precisely;

– express complex queries;

– reason about queries and their semantics. In particular, it should allow us

to reason about query equivalence;

– describe the cost model of queries;

– reason about meta-properties of queries (type soundness, security

properties, for instance, non-interference, access control or data provenance);

– characterize high-level optimization.

Finding such a model is challenging in many ways. First, it must allow us

to model data as it exists in current – and future – NoSQL systems, from the

simple key-value store, to the more complex document store, while at the same

time retaining compatibility with the relational model. While at first sight the

nested relational algebra seems to be an ideal candidate (see, for instance,

[ABI 84, FIS 85, PAR 92]), it does not allow us to easily model heterogeneous

collections which are common in NoSQL data stores. Perhaps an algebra based

on nested data types with extensible records similar to [BEN 13] could be of
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use. In particular, it has already been used successfully to model collections of

(nested) heterogeneous JSON objects.

Second, if a realistic cost model is to be devised, the model might have

to make the distributed nature of data explicit. This distribution happens at

several levels: first, collections are stored in a distributed fashion, and second,

computations may also be performed in a distributed fashion. While process

calculi have existed for a long time (for instance, the one introduced by Milner

et al. [MIL 92]), they do not seem to tackle the data aspect of the problem at

hand.

Another challenge to be overcome is the interaction with high-level

programming languages. Indeed, for database-oriented applications (such as

Web applications), programmers still favor directly using a query language

(such as SQL) with a language API (such as Java’s JDBC) or higher-level

abstractions such as Object Relational Mappings, for instance. However, data

analytic oriented applications favor idiomatic R or Python code

[GRE 15, VAN 17, BES 17]. This leads to inefficient idioms (such as

retrieving the bulk of data on the client side to filter it with R or Python code).

Defining efficient, truly language-integrated queries remains an unsolved

problem. One critical aspect is the server-side evaluation of user-defined

functions, written in Python or R, close to the data and in a distributed

fashion. Frameworks such as Apache Spark [ZAH 10], which enable data

scientists to write efficient idiomatic R or Python code, do not allow us to

easily reason about security, provenance or performance (in other words, they

lack formal foundations). A first step toward a unifying solution may be the

work of Benzaken et al. [BEN 18]. In this work, following the tradition of

compiler design, an intermediate representation for queries is formally

defined. This representation is an extension of the λ-calculus, or equivalently

of a small, pure functional programming language, extended with data

operators (e.g. joins and grouping). This intermediate representation is used

as a common compilation target for high-level languages (such as Python and

R). Intermediate terms are then translated into various back-ends ranging

from SQL to MapReduce-based databases. This preliminary work seems to

provide a good framework to explore the design space and address the

problems mentioned in this conclusion.

Finally, while some progress has been made in implementing high-level

operators on top of distributed primitives such as MapReduce, and while all
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these approaches seem to fit a similar template (in the case of join: prune non-

joinable items early and regroup likely candidates while avoiding duplication

as much as possible), it seems that some avenues must be explored to unify

and formally describe such low-level algorithms, and to express their cost in a

way that can be reused by high-level optimizers.

In conclusion, while relational databases started both from a formal

foundation and solid implementations, NoSQL databases have developed

rapidly as implementation artifacts. This situation highlights its limits and, as

such, database and programming language research aims to ‘correct’ it in this

respect.
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Distributed SPARQL Query Processing:
a Case Study with Apache Spark

2.1. Introduction

The Semantic Web is rapidly growing, generating large volumes of

Resource Description Framework (RDF) data [W3C 14] stored in the Linked

Open Data (LOD) cloud. With data sets ranging from hundreds of millions to

billions of triples, RDF triple stores are expected to meet properties such as

scalability, high availability, automatic work distribution and fault tolerance.

This chapter is dedicated to the problem of evaluating SPARQL queries over

large RDF datasets. Section 2.2 introduces the RDF data model and the

SPARQL query language. The challenges and solutions for efficiently

processing SPARQL queries and in particular basic graph pattern (BGP)

expressions are presented in section 2.3. The specific solution using the

MapReduce framework for processing SPARQL graph patterns [DEA 04] is

introduced in section 2.4. The chapter concludes with section 2.5, describing

the use of Apache Spark and explaining the importance of the physical data

layers for the query performance.
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2.2. RDF and SPARQL

2.2.1. RDF framework and data model

The Resource Description Framework (RDF) is a family of W3C

specifications for linking and sharing data on the Web. RDF was originally

designed as a metadata model for describing and linking any kind of web

resources, for example web pages, images, audio and video files, and

services. It includes a graph-oriented abstract data model with optional

schema definitions and a high-level declarative query language called

SPARQL. RDF shares many features of semi-structured data

models [ABI 00] for modeling and structuring heterogeneous information in

open environments such as the Web. In particular, RDF data graphs can be

produced without a predefined schema and SPARQL allows querying both

schema and instance information simultaneously.

Figure 2.1. RDF graph. For a color version of this figure, see
www.iste.co.uk/pivert/nosql.zip

EXAMPLE 2.1.– Figure 2.1 shows an RDF graph of French kings and queens.
Following the principle of other web standards, nodes (resources) and edges
(properties) are identified by URIs, and information sharing is simplified by
the possibility of using different serializations (XML1 , Turtle2 and N-Triples3)
for encoding the graph structure. For example, the following Turtle document
encodes the graph in Figure 2.1:

1 https://www.w3.org/XML/

2 https://www.w3.org/TR/turtle/

3 https://www.w3.org/2001/sw/RDFCore/ntriples/
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@prefix : <http://www.royals.org/#> .

@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

:r1 rdf:type :King; :son :r3 ; :name "Francois I" .

:r2 rdf:type :King; :wife :r7 ; :name "Charles IX" .

:r3 rdf:type :King; :wife :r5 ; :name "Henri II" .

:r4 rdf:type :King; :wife :r6 ; :name "Francois II" .

:r5 rdf:type :Queen; :husband :r3; :name "Catherine de Medici";

:son :r4 ,:r2, [ rdf:type :King; :name "Henry III" ] .

:r6 rdf:type :Queen; :husband :r4; :name "Mary Stuart" .

:r7 rdf:type :Queen; :husband :r2; :name "Elisabeth d Autriche" .

The first two lines define to XML namespace prefix : and rdf: for
identifying the collections of resources and properties. The third line defines
three properties for resource :r1 in namespace http://www.royals.
org/#. Property rdf:type defines resource :r1 as an RDF instance of class
:King, resource :r3 is the :son of :r1 and property :name denotes the name
of :r1 by a literal value. Formally, this line can be translated into three
Subject-Property-Object (SPO) triples sharing the same subject
http://www.royals.org/#r1:

<http://www.royals.org/#r1> <http://www.w3.org/1999/02/22−rdf−syntax−ns#type>

<http://www.royals.org/#King> .

<http://www.royals.org/#r1> <http://www.royals.org/#:son>

<http://www.royals.org/#r3> .

<http://www.royals.org/#r1> <http://www.royals.org/#name> "Francois I" .

2.2.1.1. RDF schema

RDF schemas (RDF/S) are used for validating data and for inferring new

data (triples). This inference is formally defined by logical RDF/RDF/S

entailment rules. This simple schema inference makes RDF a fundamental

part of the Semantic Web and linked open data initiatives since it enables

incremental data and knowledge integration, resource linking and semantic

resource annotation.

http://www.royals.org/#
http://www.royals.org/#
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EXAMPLE 2.2.– The following document defines an RDF schema for data sets
about royalties (namespace definitions are omitted).

:King rdfs:subClassOf :RoyalPerson , :Man .

:Queen rdfs:subClassOf :RoyalPerson , :Woman .

:child rdfs:domain :RoyalPerson ; rdfs:range :RoyalPerson .

:son rdfs:domain :RoyalPerson ; rdfs:range :Man .

rdfs:subPropertyOf :child ;

:name rdfs:domain :RoyalPerson ; rdfs:range rdfs:Literal .

:husband rdfs:domain :Woman ; rdfs:range :Man .

:wife rdfs:domain :Man ; rdfs:range :Woman .

2.2.1.2. RDF/S entailment

RDF/S entailment rules allow us to infer that :RoyalPerson, :Man and

:Woman are classes (property rdfs:subClassOf only exists between RDF

schema classes), and the son of a :RoyalPerson is an instance of two

classes, :Man (range of :son) and :RoyalPerson (range of :child). We can

recursively infer that :r4 is a :RoyalPerson (:King is a subclass of

:RoyalPerson) and :Man (range of property :husband). An extract of the

saturated data set obtained after this entailment process is shown in

Figure 2.2. Schema resources are in gray and rdf:type property edges are in

red. The son of Catherine de Medici is a blank node (the green circle), i.e. an

unidentified resource.

Figure 2.2. Saturated data set kingsandqueens.ttl. For a color
version of this figure, see www.iste.co.uk/pivert/nosql.zip
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2.2.2. SPARQL query language

2.2.2.1. Graph patterns

SPARQL queries [HAR 13] are composed of a graph pattern expression

(GPE) and a solution modifier. The graph pattern expression is a logical

combination (UNION, MINUS, OPTIONAL) of basic graph patterns (BGP)

combined with content filtering functions (FILTER). The WHERE clause is

followed by a Graph Pattern which corresponds to a conjunction of triple

patterns where subjects, properties and objects can also be variables (prefixed

with a “?” symbol). SPARQL 1.1 also includes property paths which are

regular expressions over property types. Basic graph patterns are defined by

RDF Turtle expressions where constants can be replaced by variables. The

result of a graph pattern expression is a table of variable bindings which can

be modified by applying classical relational operators such as projection,

distinct, order, limit and group by. Solution modifiers define the query result

format, which can be a simple table (select), an RDF graph (construct), a

Boolean variable which is true if the result is not empty (ask) and a general

description (describe) of the matching RDF resources.

EXAMPLE 2.3.– The following query returns the father-in-law of Catherine
de Medici. The pattern expression is defined in the where clause, whereas the
solution modifier is a simple projection on the bindings of variable ?nr:

prefix : <http://www.royals.org/#>

select ?nr from <kingsandqueens.ttl>

where { ?r :name ?nr ; :son ?s . ?s :wife ?w .

?w :name ‘‘Catherine de Medici’’ }

Listing 2.1. Query Q1

----------------
| nr |
================
| "Francois I" |
----------------

Listing 2.2. Result of Q1

2.2.2.2. Mapping semantics

The formal semantics of a basic graph pattern (BGP) P consist of finding

all mappings m from the variables in P to the nodes in the RDF data set D
such that m(P ) is a sub-graph of D. Formally, there exists at least one such

mapping m (that is, an answer) if P is isomorphic to a sub-graph of D, which

is known to be an NP-complete decision problem.
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EXAMPLE 2.4.– Figure 2.3 shows the SPARQL query graph for query Q1 and
an extract of the input data graph as well as a mapping from the query graph to
the data graph (red lines). Since Catherine de Medici has been married exactly
once, query Q1 generates exactly one mapping as shown in Figure 2.3.

Figure 2.3. Pattern matching semantics. For a color version of this
figure, see www.iste.co.uk/pivert/nosql.zip

2.2.2.3. SPARQL algebra

The core fragment of SPARQL can be formalized by an algebra over SPO
triple set encodings of RDF graphs [PÉR 06].

EXAMPLE 2.5.– The following query Q2 combines three BGPs and returns
the names of all kings and queens whose name starts with the letter “C”, the
names of their wives/husbands, and, where they exist, the name of their sons.
We observe that kings and queens without a spouse do not appear in the result.

prefix : <http://www.royals.org/#>

select ?n1 ?n2 ?ns

from <kingsandqueens.ttl>

where { { ?x :name ?n1 ; :wife [ :name ?n2 ] }

UNION

{ ?x :name ?n1 ; :husband [ :name ?n2 ] }

OPTIONAL { ?x :son [ :name ?ns ] }

FILTER (regex(?n1,"^C")) }

Listing 2.3. Query Q2
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The result of query Q2 is shown in Listing 2.4:

-------------------------------------------------------------------
| n1 | n2 | ns |
===================================================================
| "Charles IX" | "Elisabeth d Autriche" | |
| "Catherine de Medici" | "Henri II" | "Francois II" |
| "Catherine de Medici" | "Henri II" | "Henry III" |
| "Catherine de Medici" | "Henri II" | "Henry III" |
| "Catherine de Medici" | "Henri II" | "Charles IX" |
-------------------------------------------------------------------

Listing 2.4. Result of Q2

Query Q2 can be translated into the following SPARQL algebra expression

[HAR 13] generated by JENA-ARQ4:

(project (?n1 ?n2 ?ns)

(conditional
(union

(sequence
(filter (regex ?n1 "^C")

(bgp (triple ?x <http://www.royals.org/#name> ?n1)))

(bgp
(triple ?x <http://www.royals.org/#wife> ??0)

(triple ??0 <http://www.royals.org/#name> ?n2)

))

(sequence
(filter (regex ?n1 "^C")

(bgp (triple ?x <http://www.royals.org/#name> ?n1)))

(bgp
(triple ?x <http://www.royals.org/#husband> ??1)

(triple ??1 <http://www.royals.org/#name> ?n2)

)))

(bgp
(triple ?x <http://www.royals.org/#son> ??2)

(triple ??2 <http://www.royals.org/#name> ?ns)

)))

4 https://jena.apache.org/documentation/query/arq-query-eval.html
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The triple operator computes all variable binding tuples of simple triple

patterns. The bgp operator joins the binding tuples with the same values for

all shared variables. The filter operator filters bindings according to the

filtering predicate. The union operator computes the union of all binding

tuples, whereas conditional adds all optional bindings obtained by the second

sub-expression. The final set of variable bindings is defined by the operator

project.

In the rest of this chapter, we are focusing on the evaluation of basic graph

patterns (BGP) without filters, alternatives and union. Efficiently evaluating

such patterns is essential for all SPARQL query engines and an important

challenge in SPARQL query optimization.

Figure 2.4. Basic graph pattern. For a color version of this
figure, see www.iste.co.uk/pivert/nosql.zip

EXAMPLE 2.6.– The following pattern corresponds to query Q1 in Listing 2.1
with four triple patterns t1 to t4 (see also Figure 2.4):

(prefix ((: <http://www.royals.org/#>))

(project (?nr)

(bgp
t1 (triple ?r :name ?nr)

t2 (triple ?r :son ?s)

t3 (triple ?s :wife ?w)

t4 (triple ?w :name "Catherine de Medici")

)))

Listing 2.5. Basic graph pattern of Q1

Each triple pattern t1, ..., t4 implicitly defines a triple selection which
computes all triples respecting this pattern. Pattern t4 filters all triples with
property : name and value "Catherine de Medici" and binds variable ?w to
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the subjects of these triples. Variables ?r, ?s and ?w are called join variables,
since ?r joins t1 and t2 on their subject, ?s joins the object of t2 with the
subject of t3 and ?w joins the object of t3 with the subject of t4. These joins
can be combined to generate the so-called join plans. For example, the above
basic graph might first evaluate the filters t1 bind variables ?r and ?nr to all
resources and their names, before joining these resources with the bindings
for ?r and ?s obtained by filter t2: joinr(t1, t2). The result can then be joined
with t3 and t4 to obtain a final join plan Q11 = joinw(t4, joins(t3, joinr

(t1, t2))).

We also observe that the join operations are commutative and distributive

and that it is possible to build several equivalent plans with different join

orderings. On the contrary, as we will show in section 2.3, the processing cost

can change drastically between two equivalent plans with different join

orderings.

EXAMPLE 2.7.– Since t4 produces only one binding for variable ?w, it might
be more interesting to join t4 with t3 first: Q12 = joinr(t1, joins(t2, joinw

(t3, t4))). Other triple pattern orderings might become completely inefficient,
because they generate cross products like the following plan: Q12 = joins,w

(t3, joinr(t2, cross(t1, t4))).

2.3. SPARQL query processing

RDF has become a de facto standard for publishing information and

knowledge on the Web. Compared to other standards such as XML or JSON,

RDF facilitates in particular the integration of information by linking RDF

resources of separate data sets through owl:sameAs, rdf:type, and

rdfs:subClassOf properties. The resulting Semantic Web of linked open
data (LOD) sets is composed of billions of triples, and building systems for

efficiently storing and querying the Semantic Web is a technological and

scientific challenge reminiscent of other Big Data applications.

2.3.1. SPARQL with and without RDF/S entailment

The first challenge concerns the interaction between SPARQL’s graph

pattern matching semantics and RDF’s data model semantics defined by the

RDF/S entailment rules. There mainly exist two solutions to evaluating a
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query Q over a data set D and a set of entailment rules R. The first solution is

to first saturate D by recursively applying all entailment rules R to generate a

saturated data set D′5 and to then apply Q on sat(D,R). The second solution

is to rewrite Q into a new query rew(Q,R) such that

rew(Q,R)(D) = Q(sat(D,R)). The data saturation method has the

advantage that it is simple to implement, at least for RDFS entailment rules,

by using standard forward chaining, and is independent of the query

language. However, it also might generate a huge amount of data and become

inefficient if D changes often (preprocessing cost). The query rewriting

method is more complex to implement (similar to the “query rewriting using

views” problem [HAL 01]) and might take more time during query execution.

The current trend in RDF stores is to apply saturation combined with efficient

and scalable solutions for reducing data storage and query processing cost.

The rest of this section will present an overview of these solutions.

2.3.2. Query optimization

Query optimization is a fundamental database problem and a central part

of all data processing platforms that provide query capabilities. The main goal

is to identify the optimal query execution plan for a given query. Optimality is

defined with respect to the estimated costs of different query plans. These cost

estimations depend on the implementation(s) of the different (algebraic)

operators (triple filter, bgp join and project) and the underlying system

architecture. In traditional centralized database systems, where data is stored

on a disk, the cost is dominated by the cost of reading data into the main

memory. Scalable query engines that are based on distributed data storage

should also consider the data transfer cost. On the contrary, in main

memory-based computation, the costs are strongly dominated by the data read

and transfer costs [ÖZS 11] and are generally ignored in both settings.

The main challenge in processing complex graph pattern queries is to

optimize the join operations (bgp) which dominate the cost of all other

operators.

5 There exists exactly one such saturated set (a fixpoint) D′.
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EXAMPLE 2.8.– Consider the following basic graph pattern expression:

(bgp
t1 (triple ?r <http://www.royals.org/#name> "Francois I")

t2 (triple ?r <http://www.royals.org/#son> ?f)

t3 (triple ?f <http://www.royals.org/#name> ?nf)

t4 (triple ?f <http://www.royals.org/#wife> ?e)

t5 (triple ?e <http://www.royals.org/#name> ?ne)

)

Listing 2.6. Basic graph pattern P1

If we consider only binary join operations, there are 5! = 120 possible
equivalent left-linear join plans P = (...(tπ(1), tπ(2)), ...tπ(5)) for P1, where
each pattern corresponding to a permutation π of the sequence 1, 2, 3, 4, 5.

2.3.2.1. Logical and physical join plans

For each logical join plan, there exists a number of possible physical join

plans using different join operations based on different join algorithms

(nested loop, merge join, hash join, etc.) [RAM 00]. Depending on the

algorithm used, each of these physical plans has different processing costs

depending on the data size and distribution. In particular, there does not exist

a single join implementation that dominates all other implementations. This

issue will be discussed in section 2.4 in the context of distributed join
algorithms.

2.3.2.2. Cost estimation model

In order to choose a query execution plan in general and a join plan in

particular, the system must be able to estimate the cost of each plan without

executing it. Logical cost estimation models do not take account of physical

index structures and data distribution, but they mainly try to estimate the size

(the number of triples) of each join argument (the triple pattern) and the join

result. This estimation can be based on simple binding pattern-based heuristics

using the number and position of the free variables to order the joins [TSI 12].

For instance, in the previous example, t1 is the only pattern with a single free

variable and will be evaluated before all other patterns. This evaluation binds

(join) variable ?r for joining with triple t2, etc. These simple estimations can

be extended by adding knowledge about the used join algorithms and statistical

information about the distribution of values, properties and/or node identifiers.
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2.3.2.3. Join operation re-ordering

In all cases, the join ordering plays a crucial role in the generated cost. For

example, when using a simple nested loop implementation, plan

((((t1, t2), t3), t4), t5)) is more efficient than, for example, plan

((((t5, t4), t3), t2), t1)): it is more efficient to bind first variable ?r to the

node corresponding to François I (triple t1) and find his son (?f) and their

name (?nf) and spouse (?f) than finding all resources with a name (?e) and

keep only those which are the spouse of a node (?f) which is the son of

François I (?r).

2.3.2.4. Indexing

Indexing data is a standard way to achieve better performance. The main

goal is to prune the search space for filtering triples. Many index structures,

like B+-trees, naturally order the indexed data sets by the index key. This is

particularly useful for implementing efficient merge join algorithms. Certain

RDF stores make an intensive use of such indexes [NEU 10, WEI 08] for

precomputing all possible orders on triples (order by subject/property,

subject/object, object/property, object/subject, property/subject and

property/object).

EXAMPLE 2.9.– For example, for processing graph pattern P1, we might then
use the object/property index to rapidly find the binding (subject) ?r of triple
pattern t1, the subject/property index to prune all triples t2, etc.

The query performance gain has to be put into perspective with the

additional index processing and storage cost.

2.3.2.5. Distribution and parallelization

Finally, an important trend used to achieve scalability is in exploiting

parallel/distributed data processing infrastructures (clusters) like Hadoop and

Spark for processing SPARQL queries. The main goal and challenge is to

decompose global join plans over a large data set D into a composition of

joins on partitions of D distributed over the cluster nodes. Within this context,

the cost model includes data exchange cost between nodes. Finding the

optimal data distribution and join plan that minimizes data transfer by

optimizing data-to-query locality is a major issue, which we will discuss in

section 2.4.
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2.3.3. Triple store systems

This section focuses on graph database systems based on the RDF abstract

data model. Hence, we will not consider systems based on the property graph

model, which can be considered as direct competitors of triple stores. A triple

store is a system for storing and querying RDF data sets. It provides the

so-called SPARQL endpoints [CUR 15a] and can be organized into triple

store federations which collaborate through their SPARQL endpoints to

answer global SPARQL queries. This federation capacity plays a crucial role

in building the linked open data cloud.

In this section, we give an overview of existing triple store systems and

classify them by the underlying general technologies they use. More specific

challenges and solutions related to SPARQL query processing will be

discussed in section 2.3, followed by section 2.4, which will focus on

distributed map and reduce-based implementations.

The survey [ÖZS 16] distinguishes between the following six approaches6:

2.3.3.1. Relational DB stores with SPARQL to SQL mapping

These build on standard relational DBMS systems for encoding RDF data

and executing SPARQL queries through SQL. The data set is translated into

a single table Triples(S, P,O), that stores triples with some auxiliary tables

for encoding URIs, storing values, etc. SPARQL queries are translated into

SQL and processed using a standard SQL processor. The main advantage is

the reuse of standard technology. However, SPARQL graph patterns generate

a specific class of complex SQL queries which are difficult to optimize using

a standard SQL query optimizer.

2.3.3.2. Single-table triple stores with extensive indexing

These approaches also apply a direct relational mapping into a single

triple table, but use a native RDF storage system (i.e. the system does use an

external database management system to handle RDF triples) and an optimized

SPARQL query processor. This processor mainly implements an efficient

merge join operator by generating an index for each possible permutation

SPO, SOP , PSO, POS, OSP and OPS. This avoids the costly sorting

6 In the following, S, P and O denote the triple subject, property and object respectively.
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phase, since each index defines a different lexicographic ordering of the triples

and enables the selection of an optimal merge join algorithm for any join

variable position. In particular, star queries can be efficiently evaluated as

simple range queries over the corresponding index.

2.3.3.3. Property table-based triple stores
These are designed for exploiting structural RDF patterns appearing in RDF

data sets. Clustered property tables group together sets of properties which are

frequently shared by the same subjects, whereas property class tables regroup

resource instances of the same rdfs:Class. The main challenge is to define

efficient data structures for taking into account multi-valued properties and

irregularities (NULL values).

2.3.3.4. Binary table-based triple stores
These follow a column-oriented schema organization defining a binary

table p(S,O) sorted by the subject S for each property p. This vertical

partitioning reduces the I/O cost, and star queries are efficiently implemented

through merge joins.

2.3.3.5. Graph-based triple stores
These directly attempt to implement the mapping semantics of SPARQL

(section 2.2.2.2). The corresponding subgraph isomorphism decision problem

is NP-complete [GAR 79] and the main idea consists of reducing the search

space before the matching step using a false-positive pruning step to find a safe

set of candidate subgraphs. This pruning can be achieved through particular

encoding and indexing methods as described in [ZOU 14]. TrinityRDF

[ZEN 13] is a distributed in-memory RDF store proposed on the Microsoft

Azure cloud. It is based on the Trinity key-value store and adopts a hash-based

partitioning.

2.3.3.6. Cloud-based distributed triple stores
These achieve scalability by exploiting the data parallelism of modern

cloud infrastructures such as Hadoop and Spark. See section 2.4.2.1 and

[KAO 15] for a detailed overview on cloud-based triple stores.

2.4. SPARQL and MapReduce

The features expected from modern RDF triple stores are reminiscent of

the Big Data trend in which solutions implementing specialized data stores
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from scratch are rare due to the enormous development effort they require.

Instead, many RDF triple stores prefer to rely on existing infrastructures based

on MapReduce [DEA 04] and clusters of distributed data and computation

nodes for achieving efficient parallel processing over massively distributed

data sets (see section 2.4.2.1). However, these cluster infrastructures are not

designed as fully-fledged data management systems [STO 10] and integrating

an efficient query processor on top of them is a challenging task. In particular,

data storage and communication costs generated by the evaluation of joins

(including data preprocessing and indexing) over distributed data need to

be addressed cautiously. This section mainly reflects the work published

in [NAA 17, NAA 16].

2.4.1. MapReduce-based SPARQL processing

Given a triple data set D, a query expression Q and a cluster of computation

nodes C, we assume the following global query evaluation process: (i) the

data set D is partitioned and distributed over the cluster C following a

predefined query-independent hash-based partitioning strategy; (ii) each node

can evaluate any triple selection locally over its own triple set; (iii) the join

plans are executed following a distributed physical join plan using different

physical join implementations. Next, we provide details on each of these steps.

2.4.1.1. Data partitioning

Due to its high efficiency, hash-based data partitioning is the foundation of

MapReduce-based parallel data processing infrastructures. Consider a cluster

C = (node1, · · ·nodem) of m nodes and some query q with variables V over

an input data set D. Any subset V ′ defines a partitioning scheme for q, denoted

qV
′
, which describes the partitioning of the triples matched by q with respect

to the bindings of a variable subset V ′ ⊆ V .

EXAMPLE 2.10.– For example, (?x prop ?y)?x denotes that all triples with
the property prop are partitioned by their subject, (?x ?p ?y)?p denotes a
vertical partitioning by property type and (?x ?p ?y)?x denotes a horizontal
partitioning by subject. It is also possible to partition by subject and object,
(?x ?p ?y)?x ?y. By definition, (?x ?p ?y)?x ?p ?y is equivalent to (?x ?p ?y)∅

and denotes a random partitioning.
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In the following, we suppose that all triples of the input data are partitioned

by their subject.

2.4.1.2. Triple selection (FILTER)
Given a triple pattern t, the triple selection algorithm consists of computing

all bindings for the variables in t. All triple selections are evaluated locally

on each cluster node and generate no data transfer. In our experiments

(section 2.5.3), we rely on a semantic encoding [CUR 15b] to accelerate

the filtering process. A second optimization consists of merging all triple

patterns into a “disjunctive” pattern as a first pruning step. Consider a query

Q = {t1, · · · , tn} composed of n triple patterns. Since all ti are expressed

over the same data set D, there are opportunities to save on access cost for

evaluating Q. The basic idea is to replace n scans over the whole data set D
by a single scan over the whole data set and k scans over a much smaller

subset. For this, we first rewrite the selections in q into a single selection

S = σc1∨···∨cn(D) where ci is the select condition of ti which returns all

triples
⋃n

i=1 ti necessary for evaluating Q. This approach (known as a shared-

scan) tends to reduce the access cost for selective queries that only access a

small subset of D.

Triple selection preserves the partitioning schemes of their input, i.e. the

result of a triple selection has the same partitioning as the input data set. For

instance, considering query Q8 over a triple set D partitioned by subject, we

obtain the following partitioning schemes for each triple selection query: tx1 ,

ty2, tx3 , ty4, tx5 .

2.4.1.3. Partitioned join: Pjoin

Let Q = joinV (q
p1
1 , qp22 ) be a join query, with qi a triple pattern

or a subquery. The partitioned join operator, henceforth denoted as

PjoinV (q
p1
1 , qp22 ), repartitions and distributes, when necessary, the input data

over the bindings of all variables in V (i.e. it shuffles on V ) and then computes

the join result for each partition in parallel as detailed in algorithm 2.1.

We distinguish three cases depending on pi values:

i) p1 = V ∧ p2 = V ; the join is local since every qi is already partitioned

on the join key V . This case generates no data transfer.

ii) p1 = V ∧ p2 �= V ; the result of q2 is shuffled on V before evaluating the

join;
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iii) p1 �= V ∧ p2 �= V . Every qi’s result is shuffled on V before evaluating

the join. The result of Q is partitioned on V , which is denoted as QV . The

corresponding transfer cost is:

∑

1≤i≤2∧pi �=V

Tr(qi) with Tr(qi) = θcomm ∗ Γ(qi),

where Γ(q) is the result size of a given subquery q and θcomm is the unit

transfer cost.

Algorithm 2.1. Partitioned join

1: Input: {qp11 , qp12 }, join variables V

2: Output: result fragment Resultj on each node nodej

� Evaluate and shuffle sub-query results

3: for all qi do
4: for all nodej do
5: dij ← evaluate qi on node nodej

6: if pi �= V then
7: repartition dij on V into {dij1, · · · , dijm}
8: for all nodek �= nodej do
9: transfer dijk from nodej to nodek

� Compute join locally on each node

10: for all nodej do
11: ResultVj ← (

⋃m
x=1 d1xj) �� (

⋃m
x=1 d2xj)

For example, in Figure 2.5, consider the subquery joining t2, t3, t4 on y.

An evaluation of this subquery is Pjoiny(t
x
3 , P joiny(t

y
2, t

y
4)

y)y. Since D is

partitioned by subject, t2 and t4 are adequately partitioned on y and join locally

without any transfer. This plan only partitions and shuffles (i.e. distributes on

its object y) the result of t3 before computing the last join.
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Figure 2.5. Evaluation plans for query Q8 on the LeHigh University
Benchmark (LUBM). For a color version of this figure, see

www.iste.co.uk/pivert/nosql.zip

2.4.1.4. Broadcast join: Brjoin

The broadcast join, denoted as BrjoinV (q
p1
1 , qp22 ), consists of sending the

query result of q1 to all compute nodes, as detailed in algorithm 2.2. Without

loss of generality, we assume that q2 is the target subquery, excluded from

the broadcast step, and has a larger size than q1. The broadcast join does not

consider the partitioning of its arguments and preserves the partitioning of the

target query, i.e. the result of the broadcast join has the same partitioning as

qp2 . The corresponding transfer cost is:

(m− 1) ∗ Tr(q1),

where m is the number of nodes and Tr(q1) is defined as before. A

broadcast join does not require any specific data partitioning and preserves

the partitioning of the target query, i.e. the result of the broadcast

join has the same partitioning as the target query qpn . For example,

consider the subquery t2, t3, t4 of Q8. An evaluation of joiny(t2, t3, t4) is

Brjoiny(t
y
4, Brjoiny(t

y
2, t

x
3)

x)x which broadcasts the bindings of t2 and t4 to

all nodes and evaluates the join locally at each node, whatever the partitioning

of t3. The partitioning of the query result is the same as t3, i.e. a partitioning

on x.
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Algorithm 2.2. Broadcast join

1: Input: {qp11 , qp22 }, join variables V

2: Output: result fragment Resultj on each node nodej

� Evaluate and broadcast q1 result

3: for all nodej do
4: d1j ← evaluate q1 on node nodej

5: for all nodek �= nodej do
6: transfer d1j from nodej to nodek

� Compute join locally on each node

7: for all nodej do
8: d2j ← evaluate q2 on node nodej

9: Resultp2j ← ⋃m
y=1 d1y �� d2j

2.4.2. Related work

2.4.2.1. Cloud-based triple stores

Edutella [NEJ 02] and RDFPeers [CAI 04], the first systems considering

distributed storage and query answering for RDF data, were based on a

P2P infrastructure. They are mainly based on hash-based indexing techniques

and used mainly in tackling partitioning issues. More recently, YARS2

[HAR 07] and Virtuoso [ERL 12] were based on hashing one of the RDF

triple components, most frequently the subject. SHARD [ROH 10] is the first

triple store built on top of Apache Hadoop distributed data storage (HDFS)

and MapReduce. Triple sets are stored in HDFS as flat files where each

line represents all the triples associated with a given subject (a subject-based

partitioning). The SHARD query processing engine iterates over the set of

triples for each triple pattern in the SPARQL query, and incrementally attempts

to bind query variables to literals in the triple data, while satisfying all of

the query constraints. The SPARQL query clauses are processed in several

MapReduce steps, forcing high latency due to a large number of I/O operations

over HDFS. Huang et al. [HUA 11] used a graph partitioner to distribute (with

replication) triples over a set of RDF database instances.
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Hadoop is used for the execution of certain queries, and to supervise query

processing of queries where the answer set spans multiple partitions. However,

the system suffers from Hadoop’s start-up overhead and inherent I/O latencies.

SemStore [WU 14] divides the RDF graph into a set of paths which cover the

original graph nodes. These paths are denoted as Rooted SubGraphs (RSG)

since they are generated starting from root nodes (with a null in-degree) to

all their possible leaves. RSG are clustered into partitions using k-means

regrouping RSG paths with shared segments. The main limitations of this

approach are the inefficiency of k-means for highly dimensional vectors and

the difficulty in achieving an efficient load balancing of the triples across the

partitions. The design of the SHAPE system [LEE 13] is motivated by the

limited scalability of graph partitioning-based approaches and applies simple

hash partitioning for distributing RDF triples. Like in [HUA 11], SHAPE

replicates data for achieving n-hop locality guarantees and takes the risk

of costly inter-partition communication for query chains which are longer

than their n-hop guarantee. Sempala [SCH 14] executes SPARQL queries

using the Hadoop-based Impala [KOR 15] database for the parallelization and

fragmentation of SQL queries.

Sempala is responsible for translating SPARQL queries into Impala’s SQL

dialect. The data layout corresponds to a triples table (justified by triple

patterns with unbound properties) along a so-called unified property table, i.e.

a unique relation composed of one column containing subjects and as many

columns as there are properties. The overhead of this data layout is mitigated

by the efficient representation of NULL values in Parquet. The unified property

table layout is efficient for star-shaped queries, but it is not adapted to other

query shapes. The on-disk storage approach of Sempala motivated its authors

to propose a new system called S2RDF [SCH 16] which is built on Spark

and uses its SQL interface to execute SPARQL queries. Its main goal is

to address all SPARQL query shapes efficiently. Its data layout corresponds

to the vertical partitioning approach presented in [ABA 07], i.e. triples are

distributed in binary SO relations for each RDF property. Additional relations

are precomputed at the data load time to limit the number of comparisons

when joining triple patterns. Considering query processing, each triple pattern

of a query is translated into a single SQL query and the query performance is

optimized using the set of statistics and additional data structures computed

during this preprocessing step. The data preprocessing step generates an

important data loading overhead.
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2.4.2.2. Distributed multi-way join processing

Distributed multi-way join processing has been the topic of many research

efforts over the decades [LU 91]. We will cite only some of the most

recent representative contributions in parallel distributed multi-way joins over

partitioned data. In [AFR 10], a solution is presented for the computation

of multi-join queries in a single communication round. The algorithm

was originally designed for the MapReduce approach, thus justifying the

importance of limiting communication costs which are associated with

high I/O costs. The authors of [BEA 14] have generalized this single-

communication n-ary join problem over a fixed number of servers and

designed a new algorithm, named HyperCube, by providing lower and upper

communication bounds. HyperCube is also used in [CHU 15] which is a

promising approach for evaluating SPARQL queries in a MapReduce setting

where the number of rounds has to be restricted. CliqueSquare [GOA 15] also

tries to reduce the number of rounds by producing flat multi-way join plans.

2.5. SPARQL on Apache Spark

2.5.1. Apache Spark

Apache Spark [ZAH 10] is a cluster computing engine which can be

understood as a main memory extension of the MapReduce model, enabling

parallel computations on unreliable machines and automatic locality-aware

scheduling, fault tolerance and load balancing. While both Spark and Hadoop

are based on a data flow computation model, Spark is more efficient than

Hadoop for applications requiring the frequent reuse of working data sets

across multiple parallel operations. This efficiency is mainly due to two

complementary distributed main memory data abstractions, as shown in

Figure 2.6: (i) Resilient Distributed Data sets (RDD) [ZAH 12], a distributed,

lineage-supported, fault-tolerant memory data abstraction for in-memory

computations (when Hadoop is mainly disk-based) and (ii) Data Frames (DF),

a compressed and schema-enabled data abstraction. Both data abstractions ease

the programming task by natively supporting a subset of relational operators

such as project, join and filter.

On top of RDD and DF, Spark proposes two higher-level data access

models, GraphX and Spark SQL. Spark GraphX [GON 14] is a library

enabling the manipulation of graphs through an extension of Spark’s RDD and
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follows a vertex-centric computation model which is dedicated to evaluating

iterative graph algorithms in parallel, for example, PageRank. This processing

model is not adapted to set-oriented graph pattern matching and is not

considered in our evaluation. Spark SQL [ARM 15] allows for querying

structured data stored in DFs. It translates a SQL query into an algebraic

expression composed of DF operators such as selection, projection and join.

Its query optimizer, Catalyst [ARM 15] reorders the operations to obtain a

more efficient execution plan, e.g. either process selections first or change the

order of successive joins.

Figure 2.6. SPARQL on Spark architecture

2.5.2. SPARQL on Spark

Spark, being a general purpose cluster computing platform, does not

support SPARQL query processing in particular. This raises the problem of

leveraging the data manipulation operators provided by Spark to process

SPARQL queries efficiently. The main challenge is to evaluate parallel and

distributed join plans with Spark such that data transfers are reduced in favor

of more local computation. We investigate to what extent each Spark layer (i.e.

SQL, RDD and DF) is suitable for SPARQL processing and what efficiency
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could be achieved: how far each does method support the algorithms presented

in section 2.2.2 that are to evaluate joins? With this question in mind, we

propose five “plugin” approaches to enable SPARQL query processing on top

of Spark’s SQL, RDD and DF layers. The first three approaches (listed in the

top row of Figure 2.6) are worth mentioning because they are used in many

state-of-the art distributed SPARQL processing solutions. We consider them as

baselines. The last two approaches (the remaining boxes named as ‘Hybrid’),

which we proposed in [NAA 17], demonstrate the importance of combining

several join algorithms within a query plan.

2.5.2.1. SPARQL SQL

The SPARQL SQL method consists of rewriting a given SPARQL query

Q into a SQL query Q′ which is submitted to the Spark SQL layer. The

execution plan of Q′ is determined by the embedded Catalyst optimizer using

the Spark DF data abstraction, which applies the broadcast join method. In

our experiments with Spark SQL version 1.5.2, we observed that when a

query contains a chain of more than two triple patterns, a Cartesian product

is used rather than joins. We consider three triple patterns t1 = (a, p1, x),
t2 = (x, p2, y) and t3 = (y, p3, b), and the query joiny(joinx(t1, t2), t3).
Then, for the corresponding SQL expression, Catalyst generates the physical

plan P = Brjoinx(Brjoin−(t1, t3), t2) which computes a cross product

between t1 and t3 before joining with t2. This is obviously less efficient than,

for example, a plan P ′ = Brjoiny(Brjoinx(t1, t2), t3)).

2.5.2.2. SPARQL RDD

The SPARQL RDD approach consists of using the Spark RDD data

abstraction and specifically the filter and join methods of the RDD class

for evaluating SPARQL queries over large triple sets. Every logical join

translates into a call to the join method which implements the Pjoin
algorithm introduced in section 2.4.1.3. This strategy translates each join

into a Pjoin operator, following the order specified by the input logical

query, and recursively merges successive joins on the same variable into

one n-ary Pjoin. This ends up with a sequence of (possibly n-ary) joins

on different variables. The result of the first n-ary join on a variable,

say v1, is distributed before processing the next join on a variable,

say v2, and so on. Figure 2.5 shows the Pjoin plan of Q8: Q81 =
Pjoinx(Pjoinx(Pjoiny(Pjoiny(t

x
3 , t

y
4)

y, ty2)
y, tx1)

x, tx5)
x. It distributes t3

triples based on y, then joins them with t4 and t2 on y. The result is shuffled
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on x to be joined with t1 and t5 on x. The overall transfer cost of Q81 is

θcomm · (Γ(t3) + Γ(joiny(t4, t2, t3))).

It evaluates star pattern (sub-) queries locally (i.e. no shuffle) when the input

data is partitioned by the join variable, which is obviously efficient. However,

it lacks efficiency when a broadcast join is cheaper, e.g. joining a small with a

large data set. We observe that SPARQL RDD always reads the entire data set

for each triple pattern evaluation. This is remedied by merging multiple triple

selections (section 2.4.1.2).

2.5.2.3. SPARQL DF

Spark Data Frame (DF) provides an abstraction for manipulating tabular

data through specific relational operators. Translating a SPARQL query using

the DF DSL is straightforward: triple selections translate into DF where
operators, whereas SPARQL n-ary join expressions are transformed into trees

of binary DF join operators. The main benefit of using this approach comes

from the columnar, which is a compressed in-memory representation of DF.

The advantages are twofold. First, it allows for managing larger data sets (i.e.

up to 10 times larger compared with RDD) for a given memory space, and

second, DF compression saves on data transfer cost.

DF uses a cost-based join optimization approach by preferring a single

broadcast join to a sequence of partitioned join (i.e. a Pjoin plan) if the size

of the data set is less than a given threshold. This achieves efficient query

processing when joining several small data sets with a large one. However, we

observe two important drawbacks in applying the SPARQL DF approach. The

first drawback comes from the fact that DF only takes into account the size

of the input data set for choosing Brjoin. Therefore, DF does not efficiently

handle very frequent join expressions join(s, t) where s is a highly selective

filtering expression over a large data set. In this case, Brjoin would be more

efficient since it would avoid the data transfer for pattern t (cost comparison

for partitioned and broadcast joins in the following section on Hybrid joins).

Example Q82 illustrates the processing of Q8 through the DF layer. The second

drawback is that SPARQL DF (up to version 1.5) does not consider data

partitioning and there is no way to declare that an attribute among (S, P , or O)

is the partitioning key. Consequently, partitioned joins always distribute data

and cause costly data transfers. This penalizes star pattern queries where the



Distributed SPARQL Query Processing: a Case Study with Apache Spark 45

result of each triple pattern is already distributed adequately, since the query

could have been answered without any transfer.

2.5.2.4. SPARQL Hybrid

The goal of this method is to overcome the limitations found in the

SPARQL SQL, RDD and DF solutions in order to provide a more efficient

SPARQL processing solution on top of Spark. In particular, SPARQL Hybrid

aims to: (i) take into account current data partitioning to avoid useless data

transfers, (ii) enable data compression provided by the DF layer to save data

transfers and manage larger data sets and (iii) reduce the data access cost of

self join operations.

As emphasized in the evaluation (see section 2.5.3), this SPARQL Hybrid

strategy allows us to combine Pjoin and Brjoin. First, this allows the query

optimizer to exploit knowledge about the existing data partitioning in order

to combine local partitioned joins with broadcast joins. For example, if a

subject-based partitioning scheme has been applied to the data set, an optimal

join plan for a “snowflake” query pattern like Q8 is to join the result of a set

of local partitioned joins (“star” subqueries) through a sequence of broadcast

joins. Plan Q83 in Figure 2.5 first joins t4 with t2 on y without any transfer,

because t4 and t2 are adequately partitioned on their subject y. Then, it

broadcasts the result and joins it on y with t3 preserving the partitioning of

t3 on x. Finally, it locally joins the result with the remaining patterns t1 and

t5 which are also adequately partitioned on their subject x. Plan Q83 has a

lower transfer cost than the plans generated by the other planning strategies.

Second, we rely on our cost model to demonstrate that combining the Brjoin
and distributed Pjoin algorithms might also yield more efficient plans than all

other plans using only one distributed join algorithm. We highlight an example

where a plan combining both Pjoin and Brjoin algorithms is beneficial.

Figure 2.7 shows three join plans for query Q9 on the LeHigh University

Benchmark (LUBM), (using the same legend as in Figure 2.5):

Q91 = Pjoiny(t
x
1 , P joinz(t

y
2, t

z
3)

z)y [2.1]

Q92 = Brjoinz(t
z
3, Brjoiny(t

y
2, t

x
1)

x)x [2.2]

Q93 = Pjoiny(t
x
1 , Brjoinz(t

z
3, t

y
2)

y)y [2.3]
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Figure 2.7. LUBM query Q9. For a color version of this figure, see
www.iste.co.uk/pivert/nosql.zip

Plan Q91 is composed of two distributed partitioned joins, plan Q92 is

composed of two broadcast joins, whereas Q93 is a hybrid plan combining

a broadcast join on z and a distributed partitioned join on y. Suppose the

following order on the size of the patterns Γ(t1) > Γ(t2) > Γ(t3) and

Γ(joiny(t1, t2)) > Γ(joinz(t2, t3)). Then, it is easy to see that Q91 is the

optimal partitioned join plan and Q92 the optimal broadcast join plan. The cost

of these plans is:

cost(Q91) = θcomm ∗ (Γ(t1) + Γ(t2) + Γ(joinz(t2, t3))) [2.4]

cost(Q92) = θcomm ∗ (m− 1) ∗ (Γ(t2) + Γ(t3)) [2.5]

cost(Q93) = θcomm ∗ (Γ(t1) + (m− 1) ∗ Γ(t3)) [2.6]

Based on this cost model, the best plan depends on the number of machines.

For small m, Q92 wins because it broadcasts small-sized triple patterns. For

large m, Q91 wins because it does not broadcast any data. In between, we infer

the following two inequalities specifying the range of values for which the Q93

hybrid plan is most effective:

Γ(t1) < (m− 1) ∗ Γ(t2) and (m− 1) ∗ Γ(t3) < Γ(t2) + Γ(joinz(t2, t3))

If m is “high enough”, then distributing the large-sized t1 is cheaper than

broadcasting the medium-sized t2. If m is not “too high”, then broadcasting

the small-sized t3 is cheaper than distributing both the medium-sized t2 and

the result of join(t2, t3).
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We have implemented a simple dynamic greedy SPARQL optimization

strategy using this cost model which introduces a fine-grained control of the

query evaluation plan at the operator level. The initial input plan is a set of

triple patterns with the size estimation for each pattern (necessary statistics are

generated during the data loading phase). An evaluation step then consists of:

(1) choosing the pair of subqueries and the join operator which generates the

minimal cost using our cost model, (2) executing the obtained join expression,

and (3) replacing the join arguments by the join expression and the exact result

size estimation. This step is iteratively executed until there remains a single

join expression in the input plan. This strategy is implemented in both Spark

data abstraction layers, and in RDD and DF. For the RDD abstraction (which

does not support Brjoin natively), we decompose the Brjoin operator into

two functions: one for broadcasting the data and the other for computing

the join result based on the broadcast data using the mapPartition RDD

transformation method7. For the DF abstraction, to ensure that the Brjoin
operator runs consistently according to the hybrid choice, we switch off the

less efficient threshold-based join selection of the Catalyst optimizer.

2.5.2.5. Analytical comparison

SPARQL Hybrid is an enhanced query execution method which reduces

data transfer overhead between the cluster nodes and scans the whole data set

just once for any query. To better highlight the advantages of this method,

Table 2.1 presents a synthetic view of the query processing properties of all

methods presented in this section:

– Co-partitioning. Triples partitioned on the join key can be joined locally

without any data transfer. DF does not support co-partitioning until Apache

Spark version 1.5.

– Join algorithm. Brjoin1 (respectively Brjoin+) implies the support of

a single (respectively several) Brjoin per query. Pjoin is an abbreviation for

partioned join.

– Merged access. The ability to evaluate several triple selections with a

single scan of the data set.

– Optimization. The ability to choose among several join algorithms. We

qualify the choice made by Spark DF as “poor” because it ignores broadcast

joins for large data sets with highly selective triple patterns.

7 http://spark.apache.org/docs/latest/programming-guide.html#transformations
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– Data compression. DF abstraction uses data compression and can manage

data sets ten times larger than RDD, for equal memory capacity.

Co- Join Merged Query Data
Method partitioning algorithm access optimization compression
RDD � Pjoin � � �

DF �(≤ v1.5) Pjoin, Brjoin1 � poor �

SQL � Pjoin, Brjoin1 � cross product �

Hybrid RDD � Pjoin, Brjoin+ � cost-based �

Hybrid DF � Pjoin, Brjoin+ � cost-based �

Table 2.1. Qualitative analysis of five query processing methods

The table shows that the SPARQL Hybrid method offers equal or higher

support for all the considered properties. Interestingly, SPARQL Hybrid suits

both data abstractions, RDD and DF, because we strive to design it in a generic

way, decoupling the join optimization logic from the lower level Spark data

representations. We therefore are also confident that SPARQL Hybrid could

easily be extended to support forthcoming Spark data abstractions such as

DataSet or GraphFrame.

2.5.3. Experimental evaluation

We validated the query processing methods discussed in section 2.5 over

three common SPARQL query shapes, star, chain and snowflake, which

can be combined to describe other query shapes, e.g. triangles and trees.

The evaluation was conducted on an 18 DELL PowerEdge R410 cluster

interconnected by 1 GB/s Ethernet. Each machine runs a Debian Linux

distribution and has two Intel Xeon E5645 processors. Each processor consists

of six cores running at 2.4 GHz and running two threads in parallel (hyper-

threading). We used Spark version 1.6.2 and implemented all experiments in

Scala with a configuration of 300 cores and 50 GB of RAM per machine.

We selected two synthetic and three real-world knowledge bases (ranging

from half a million to close to 1.4 billion triples). The synthetic data sets

we used are the LeHigh University Benchmark (LUBM) [GUO 05] and

the Waterloo SPARQL Diversity Test Suite (WatDiv) [ALU 14]. They both

provide a data generator and a set of queries.
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The real-world data sets correspond to open source DBPedia, Wikidata

and DrugBank RDF dumps. We compared the performance of five query

processing methods over oriented star, chain and snowflake queries.

We adopted the partitioning strategy of section 2.4.1.1 (i.e. by subject)

and compared our solution with the S2RDF system [SCH 16]. More

experimentation details are available on the companion web site8.

2.5.3.1. Star queries

This experiment was conducted over the DrugBank knowledge base, which

contains high out-degree nodes describing drugs. A first practical use case

is to search for a drug satisfying multi-dimensional criteria; we defined four

star queries with a number of branches ranging from 3 to 15. We processed

each query using our five SPARQL query processing approaches and reported

query response times in Figure 2.8(a). SPARQL SQL decides to reorder the

joins only if it reduces the number of join operations which is obviously not

possible for a star query that contains only one join variable. Thus, SPARQL

SQL generates the same evaluation plan (and cost) as SPARQL DF. Both

methods ignore the actual data partitioning and broadcast the result of every

triple pattern across the machines. On the contrary, SPARQL RDD, SPARQL

Hybrid RDD, and SPARQL Hybrid DF are aware that the data are partitioned

on the subject (i.e. the join variable) and thus are able to process the query

without any data transfer. We observe that the total costs are dominated by the

transfer cost, which explains why SPARQL DF is at least 2.2 times slower than

the transfer-free methods.

When comparing the transfer-free methods, we observe that both SPARQL

Hybrid methods are 1.4 to 2 times faster than SPARQL RDD. In fact,

SPARQL Hybrid reads the data set only once, whereas the data access

cost of SPARQL RDD is proportional to the number of branches (triple

selection patterns). Finally, SPARQL Hybrid DF slightly outperforms

SPARQL Hybrid RDD for star queries with up to 10 branches. This is

due to the way SPARQL Hybrid implements partitioning of intermediate

results: SPARQL Hybrid RDD relies on a built-in groupBy operator whose

implementation is slightly more efficient than the user-defined groupBy
operator of SPARQL Hybrid DF.

8 https://sites.google.com/site/sparqlspark/home
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(a) Star queries (b) Chain queries

Figure 2.8. Query response time with respect to evaluation strategies
on real-world data sets. For a color version of this figure, see

www.iste.co.uk/pivert/nosql.zip

2.5.3.2. Property chain queries

This experiment is done over the DBPedia knowledge base and a set of

queries with a path length ranging from 4 to 15. We report the query response

times in Figure 2.8(b).

Chain queries chain4 and chain6 contain large (not selective) triple

patterns followed by small (selective) ones. These “large.small” sub-chains

should be evaluated by broadcasting the smaller pattern instead of shuffling

(the act of exchanging data between machines of the cluster) the larger one.

The strength of SPARQL Hybrid DF is here in estimating the patterns’

selectivity at run-time and more accurately than SPARQL DF. This allows

SPARQL Hybrid DF to choose broadcast joins for this case, whereas SPARQL

DF inaccurately estimated the pattern selectivities and favored partitioned

joins, which caused large transfer costs.

SPARQL Hybrid DF recursively chooses the lowest cost join based on the

size estimations of the intermediate results and the remaining triple patterns.

This might lead to a suboptimal plan as shown for chain query chain15
(SPARQL DF only uses a partitioned join which is more efficient). In this

specific query, the first triple pattern (say t1) and the following one (say t2)

are large compared to the other ones, but joining t1 with t2 yields a very small

intermediate result. However, this knowledge is not available before evaluating

the join and cannot be exploited by SPARQL Hybrid DF.
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2.5.3.3. Snowflake queries

First, we focus on the most complex snowflake query of the LUBM (Q8).

The evaluation plans for Q8 have been introduced in section 2.2.2 and we

report the response times in Figure 2.9(a). Q8 does not run to completion

with SPARQL SQL. The evaluation plan contains a Cartesian product that is

prohibitively expensive. This emphasizes that the Spark’s Catalyst optimizer

strategy to replace two joins by one Cartesian product should be applied more

adequately by taking into account the actual transfer cost. SPARQL DF and

SPARQL RDD confirm that working with compressed data is beneficial as

soon as the data set is large enough. Although SPARQL DF ignores data

partitioning, thus distributing more triples (320M instead of 104M triples

for the partitioning-aware approach), its transfer time is lower than SPARQL

RDD, thanks to compression.

(a) LUBM query Q8 (b) WatDiv queries on 1B triples

Figure 2.9. Performance of benchmark queries and comparison with
S2RDF. For a color version of this figure, see

www.iste.co.uk/pivert/nosql.zip

The major experimental result is that SPARQL Hybrid outperforms existing

methods by a factor of 2.3 for compressed (DF) and 6.2 for uncompressed

(RDD) data. This is mostly due to reduced transfers (only few hundred triples

instead of over one hundred million triples for the best existing approach).

SPARQL Hybrid also saves on the number of data accesses: two, against three

and five for SPARQL RDD and SPARQL DF respectively.

2.5.3.4. Comparison with S2RDF

Finally, we compare our Hybrid approach with the state-of-the-art

S2RDF [SCH 16] solution which outperforms many existing distributed

SPARQL processing solutions. We conducted the S2RDF comparison

experiments over the same WatDiv one billion triple data sets on a cluster

with approximately similar computing power than that used in the S2RDF

evaluation (we used 48 cores in our experiment against 50 cores used in
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the S2RDF experiments). Our main goal was to show that our solution is

complementary and can be combined with the S2RDF approach. For this,

as a baseline, we first selected three representative queries from the WatDiv

query set9, one for each category: S1 is a star query, F5 a snowflake and C3 a

complex query. We executed S1, F5 and C3 over one large data set containing

all the triples (i.e. without S2RDF VP fragmentation), using SPARQL SQL and

SPARQL Hybrid strategies. Then, we split the data set according to the S2RDF

VP approach (i.e. one data set per property) and ran the queries using SPARQL

SQL along with the S2RDF ordering method and SPARQL Hybrid strategies

(the response times are shown in Figure 2.9(b)). The SPARQL S2RDF+Hybrid

solution outperforms the baseline SPARQL SQL by a factor ranging between

[1.76, 2.4] and the S2RDF solution by a factor ranging between [1.72, 2.16]
which is encouraging. The benefit mainly comes from reduced data transfers:

our approach saved 483 MB for S1, 284 MB for F5 and 1.7 GB for C3. Note

that in reproducing the S2RDF experiments, we obtained response times more

than twice as fast as those reported in [SCH 16] (e.g. 3.6 s compared to 8.8 s for

query S1) and our 1.72 minimal improvement ratio is a fair comparison. This

highlights that our approach easily combines with S2RDF to provide additional

benefit. We did not compare our approach with the concept of ExtVP relations

of S2RDF’s solution, because it comes at high preprocessing overhead (17

hours for preprocessing the one billion triple data sets) which does not comply

with our objective of reducing data preprocessing and loading cost.

In this chapter, we introduced the problem of querying large RDF data sets

with SPARQL and presented an exhaustive study comparing SPARQL query

processing strategies over an in-memory-based cluster computing engine

(Apache Spark). The results emphasize that hybrid query plans combining

partitioned and broadcast joins improve query performance in almost all cases.

Although SPARQL Hybrid RDD is slightly more efficient than the hybrid DF

solution, due to the absence of a data compression/decompression overload, it

becomes interesting to switch to the DF representation when the size of RDDs

almost saturates the main memory of the cluster. In this case, we can store

almost 10 times more data on the same cluster size with only a small loss in

performance.

9 http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
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Doing Web Data: from Dataset
Recommendation to Data Linking

3.1. Introduction

The chapter introduces the main concepts of interest in the context of data

linking. We start by an overview of the Semantic Web.

3.1.1. The Semantic Web vision

With the advent of the World Wide Web (WWW), accessing information

has become quicker and simpler via Web documents which are part of a

“global search space”. In this version of the Web, knowledge is accessible

by traversing hypertext links using Web browsers. In recent years, this global

information space of connected documents is currently evolving into a global

Web of data – the Semantic Web – where both data and documents are linked.

Tim Berners-Lee, the inventor of the WWW, defined the Semantic Web as

“not a separate Web but an extension of the current one, in which information

is given well-defined meaning, better enabling computers and people to work

in cooperation” [BER 01].

The transition of the current document-oriented Web to a Web of interlinked

data has led to the creation of a global data space that contains many billions of
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linked data entities.1 In other words, linked data can be seen as a deployment

path for the Semantic Web.

In the following, we present an overview of existing visions of what the

linked data life cycle looks like going through different challenges to construct

and link knowledge graphs, while respecting linked data best practices

[BIZ 09].

3.1.2. Linked data life cycles

We start by providing Tim Berners-Lee’s vision of the five-star linked open

data system2, which is also a W3C recommendation3, where the system has to

ensure (the numbers in brackets correspond to “stars”, or in other words, the

degree of quality of linked open data): (1) availability of data on the Web, in

whatever format; (2) its availability as machine-readable structured data (e.g.

as CSV not as scanned image of table); (3) its availability in a non-proprietary

format (i.e. CSV format instead of Microsoft Excel); (4) publishing using open

standards from the W3C recommendation, RDF and SPARQL; and (5) links

to other linked open data, whenever feasible.

For this purpose, a number of linked data life cycle visions have been

adopted by the Semantic Web community, where data goes through a number

of stages to be considered as five-star linked data. Figure 3.1 shows four visions

of different linked data life cycles, which were proposed by Hyland et al.
[HYL 11], Hausenblas et al. [HAU 12], Villazon-Terrazas et al. [VIL 11], as

well as the DataLift vision [SCH 12] and the LOD2 linked open data life cycle

[AUE 10]. Since there is no standardized linked data life cycle, the main stages

of publishing a new dataset as linked data can be summarized as follows:

– extracting and transforming information from the raw data source to RDF

data. Mainly, the data source can be in an unstructured, structured or semi-

structured format, i.e. CSV, XML file, a relational database, etc. In this stage,

the data does not include vocabulary modeling, namespace assignment nor

links to existing datasets;

1 The LOD cloud diagram is published regularly at http://lod-cloud.net. and an overview of the

LOD cloud (2017) can be checked in http://lod-cloud.net/versions/2017-02-20/lod.svg.

2 Linked open data (LOD) is linked data which is released under an open license as defined in

http://5stardata.info/en/.

3 https://dvcs.w3.org/hg/gld/raw-file/default/glossary/index.html.
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– assigning namespaces to all resources, notably to make them accessible

via their URIs;

– modeling the RDF data by reusing relevant existing vocabulary terms

whenever applicable;

– hosting the linked dataset and its metadata publicly, and making it

accessible;

– linking the newly published dataset to other datasets already published as

linked data on the Web.

Figure 3.1. Examples of government linked data life cycles. For a color
version of this figure, see www.iste.co.uk/pivert/nosql.zip

It is worth noting that the different stages of the linked data life cycle are

not in a strict sequence nor do they exist in isolation; however, they are in

a process of mutual enrichment. Some stages in the linked data life cycles

are not completely automated and may need human effort either for linked

data publishing, maintenance or usage. Hence, in recent years, an increasing

number of works have shown an interest in the development of research

approaches, standards, technology and tools for supporting different stages of

the linked data life cycle.

For instance, linked data publishers face the major challenge of providing

and maintaining a data store (in the Semantic Web field, we talk of large
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triple stores4) that is highly effective and ensures the scalability of data.

Currently, there exists a wealth of works contributing to this central problem by

developing distributed data storage solutions which can work in server clusters

scattered in the cloud and handle massive amounts of triples, e.g. the Hadoop

Distributed File System (HDFS)5 for storing very large amounts of data bytes

(on the terabyte and petabyte scales).

Another current challenge concerns the linked data modeling process which

requires a huge effort from metadata designers, in particular on the issues

raised by the need to identify suitable terms from published vocabularies in

order to reuse them following linked data modeling best practices.

Further challenges include semantic link discovery between different RDF

datasets, which is manually unfeasible, considering the large amount of

data available on the Web. Usually, among the different kinds of semantic

links that can be established, the default option is to set owl:sameAs
links between different URIs that refer to the same real objects. For

example, DBpedia uses the URI http://dbpedia.org/resource/Montpellier

to identify the city of Montpellier, while Geonames uses the URI

http://www.geonames.org/2992166 to identify Montpellier. Data linking

techniques and tools are often used to deal with this problem. However, this

task still requires human involvement, notably on: (i) the identification of

candidate datasets to link to, where the search for the targets should be done

almost by an exhaustive search of all datasets in the different catalogues,

which is manually not feasible; and (ii) the strenuous task of instance mapping

configuration between different datasets.

We note that some stages in the linked data life cycles proceed

automatically, notably the automatic extraction and transformation of raw data,

which has led to the publication of large amount of information on the Web

in the form of linked datasets. However, automatic approaches have raised

many questions regarding the quality, the currency and the completeness of

the contained information. Hence, the major challenge during this process

concerns mainly the assessment of data quality.

4 https://www.w3.org/wiki/LargeTripleStores.

5 https://hadoop.apache.org/docs/r1.2.1/hdfsdesign.html.
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Several issues arise after publishing linked data with regard to both data

publishers and data consumers. On the one hand, data publishers (or rather,

maintainers) have a responsibility to ensure a continued maintenance of

the published dataset in terms of quality, i.e. access, dynamicity (different

versions, mirrors), and so on. On the other hand, from the linked data

consumers viewpoint, there is the need to:

– find and retrieve suitable information from different linked open datasets;

– integrate and reuse this knowledge;

– ensure continued feedback for data maintainers.

3.1.3. Chapter overview

As explained previously, this chapter will address the data linking challenge

which, as shown in Figure 3.2, includes: (i) the dataset selection task (in

particular, we address the problem of candidate datasets discovery aimed at

finding target datasets to link to [see section 3.2]); and (ii) the data linking

challenge. More precisely, we focus on the problem of determining which

resources refer to the same real-world entity (see sections 3.3 and 3.4). The two

challenges that we address can be summarized by the expression “looking for a

needle in a haystack”, either when searching for target datasets in large amount

of data available on linked data catalogues6, or when looking for similar

instances between two selected datasets, implying the creation of owl:sameAs
statements between them.

For the sake of clarity, we note that by dataset, we mean the RDF

description of a dataset in accordance with the definition in the Vocabulary

of Interlinked Datasets (VoID)7: “A dataset is a set of RDF triples that are

published, maintained or aggregated by a single provider”. In the same context,

the term linkset is defined in line with the VoID linkset definition – “A

collection of RDF links between two void:Datasets”, i.e. triples, in which the

subject belongs to a different dataset than that of the object.

The remainder of the chapter is organized as follows: section 3.2 presents

state-of-the-art approaches on candidate dataset identification, dealing with

6 Linked data catalogues such as http://datahub.io/.

7 http://vocab.deri.ie/void.
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the challenge of linking data. Section 3.3 describes in detail the various data

heterogeneity types that hinder the linking task. In section 3.4, we provide

the different techniques that are applied by the majority of data linking

tools and approaches. We then compare and discuss different state-of-the-art

tools/approaches according to these techniques. Finally, section 3.5 provides a

conclusion and a discussion of open issues.

Figure 3.2. Data linking challenge positioning
in the linked data life cycle

3.2. Datasets recommendation for data linking

Coreference resolution is a common thread across many communities,

which is referred to as entity matching, entity disambiguation, cross-

document coreference, duplicate record detection or record linkage. These

terms all describe the process of determining the presence of different and

heterogeneous descriptions of the same real-world objects and also the process

of determining links and relations among these descriptions in order to

make their correspondence explicit. Coreference resolution can build on a

large body of related work across different communities. For example within

database communities, we refer the interested reader to the works of Winkler

et al. [WIN 06] on record linkage and Elmagarmid et al. [ELM 07] for

duplicate detection. In the natural language processing field, we cite the survey

of Soon et al. [SOO 01] where coreference resolution can be seen as the task
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of finding all expressions that refer to the same entity in a text. The focus of

this paper is coreference resolution in the domain of linked web data, where

we refer the reader to the survey of Ferrara et al. [FER 13].

The purpose of this section is to emphasize the challenges of finding

candidate RDF datasets to link to, also known as candidate datasets
identification, selection or recommendation. We start by defining the process

of dataset recommendation followed by an overview of related work.

3.2.1. Process definition

In a data linking scenario, where the user has no or little prior knowledge

of the existing datasets on the Web, the first challenge is to identify potential

target datasets that may contain identical instances as those contained in

a given source dataset. For this purpose, let us take a step back from the

naive methods which have been usually adopted, i.e. applying one of the two

following solutions: (i) using brute force for combining all the possible pairs

of datasets to the interlinking tool; and (ii) requesting the user to select the

most suitable datasets following their intuition and background knowledge.

With the rapid growth of the Web of data, and specifically the LOD

cloud, an exhaustive search of all existing datasets in available catalogues is

manually unfeasible. Hence, the most common linking tradition is limited to

targeting popular and cross-domain datasets such as DBpedia [AUE 07] and

GeoNames [WIC 12]. However, many other potential LOD datasets have been

ignored which have led to an inequitable distribution of links and consequently,

a limited semantic consumption in the linked data graph.

The proposed solution for easing this task is the recommendation of a set

of candidate datasets to be linked, which consequently reduces considerably

the human effort in searching candidate datasets. Recommender systems in

general have been an active research area for more than a decade. Typically,

recommendation approaches are based on explicit score ratings for candidate

items. This scoring can produce an ordered list of suitable results or even more

to reduce the search space to the top n most suitable recommendations.

With respect to finding relevant datasets on the Web, several application

scenarios have been proposed, from which we cite federated search and data

linking.
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Federated search has come from the information retrieval area to meet

the need of searching multiple data sources with one query. Hartig and

Ozsu [HAR 14] presented a tutorial on linked data query processing. They

provided basics about linked data SPARQL8 queries, data source selection

(which concerns us here), and query optimization strategies. In this context,

we cite the works of [WAG 13] and [WAG 14] which present techniques of

querying distributed data sources based on well-known data mining strategies.

In other words, these techniques contextually identify related datasets which

correspond to the information needed by the user queries. A used feedback-

based approach to incrementally identify new datasets for domain-specific

linked data applications is proposed in [DEO 12]. User feedback is used as

a way to assess the relevance of the candidate datasets. Furthermore, we

cite LODVader [BAR 16], a framework for LOD Visualization, Analytics and

Discovery, which proposes to compare datasets using the Jaccard coefficient

based on rdf:type, owl:Classes and general predicates.

In the following, we cite approaches that have been devised for candidate

dataset recommendation and which are directly relevant to the data linking

task.

3.2.2. Dataset recommendation for data linking based on a
Semantic Web index

Nikolov et al. [NIK 11] proposed a keyword-based search approach to

identify candidate sources for data linking. The approach consists of two

steps: (i) searching for potentially relevant entities in other datasets using

as keywords randomly selected instances over the literals in the source

dataset, and (ii) filtering out irrelevant datasets by measuring semantic concept

similarities obtained by applying ontology matching techniques.

3.2.3. Dataset recommendation for data linking based on social
networks

Leme et al. [LEM 13] presented a ranking method for datasets with respect

to their relevance to the interlinking task. The ranking is based on Bayesian

8 The SPARQL protocol and RDF query language: https://www.w3.org/TR/rdf-sparql-

protocol/.

https://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/TR/rdf-sparql-protocol/
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criteria and on the popularity of the datasets, which affects the generality of the

approach (the well-known cold-start problem). The authors extend this work

and overcome this drawback in [LOP 14] by exploring the correlation between

different sets of features – properties, classes and vocabularies – and the links

to compute new rank score functions for all the available linked datasets.

3.2.4. Dataset recommendation for data linking based on domain-
specific keywords

Mehdi et al. [MEH 14] proposed a method to automatically identify

relevant public SPARQL endpoints from a list of candidates. First, the process

needs a set of domain-specific keywords as input, which are extracted from

a local source or can be provided manually by an expert. Then, using natural

languages processing techniques and query expansion techniques, the system

generates a set of queries that seek exact literal matches between the introduced

keywords and the target datasets, i.e. for each term supplied to the algorithm,

the system runs a matching with a set of eight queries: {original-case, proper-

case, lower-case, upper-case} * {no-lang-tag, @en-tag}. Finally, the produced

output consists of a list of potentially relevant SPARQL endpoints of datasets

for linking. In addition, an interesting contribution of this technique is the

bindings returned for the subject and predicate query variables, which are

recorded and logged when a term match is found on some SPARQL endpoints.

These records are particularly useful in the linking step.

3.2.5. Dataset recommendation for data linking based on topic
modeling

A recent approach is presented by Röder et al. [RÖD 16], where the

authors present Tapioca, a linked dataset search engine for topical similarity of

datasets. Topics are frequent schema classes and properties extracted from the

dataset metadata. The similarity of two datasets is defined as the similarity

of their topic distributions, which are extracted using the latent Dirichlet

allocation – a generative model for the creation of natural language documents.
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3.2.6. Dataset recommendation for data linking based on topic
profiles

The main goal of a recommender system is to reduce the cost of

identifying candidate datasets for the interlinking task. Some systems may

provide recommendations with high quality in terms of both precision

and recall, but only over a small portion of datasets (as is the case in

[LEM 13]). In this context, we cite a topic-based approach introduced

in [ELL 16a], which focuses on the LOD search space size reduction

challenge. This recommendation approach relies on the direct relatedness

of datasets as emerging from the topic – dataset bipartite graph9 produced

through the profiling method of Fetahu et al. [FET 14]. The main intuition

behind this approach is the consideration of topic profiles that provide

reliable connectivity indicators – the connectivity behavior – even in

cases where the underlying topic profiles might be noisy. Our assumption

is that even poor or incorrect topic annotations will serve as reliable

relatedness indicators when shared among datasets. This approach consists of

a processing pipeline that combines suitable techniques for dataset sampling,

topic extraction and topic relevance ranking. For further understanding of

topic profiles, we provide an example for a particular resource, http://data.

linkededucation.org/resource/lak/conference/edm2012/paper/21, where the

system starts by extracting all the literal values from the corresponding

entities by the use of DBpedia Spotlight[DAI 13], i.e. “Learning”10

and “Student”11 resources where the system proceeds to extract their

corresponding DBpedia categories (which will be referred to henceforth

as representative topic profiles), i.e. “Cognition”12, “Academia”13 and

“Education”14, “Intelligence”15.

A series of experiments demonstrated the effectiveness of this approach

in terms of common evaluation measures for recommender systems with an

9 The current version of the topic dataset profile graph contains 76 datasets and 185,392

topics and it is accessible via the following SPARQL endpoint: http://data-observatory.org/lod-

profiles/profile-explorer.

10 http://dbpedia.org/resource/Learning.

11 http://dbpedia.org/resource/Student.

12 http://dbpedia.org/resource/Category:Cognition.

13 http://dbpedia.org/resource/Category:Academia.

14 http://dbpedia.org/resource/Category:Education.

15 http://dbpedia.org/resource/Category:Intelligence.

http://data.linkededucation.org/resource/lak/conference/edm2012/paper/21
http://data.linkededucation.org/resource/lak/conference/edm2012/paper/21
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average recall up to 81%, translating to a search space reduction where the

approach achieved a reduction of the original (LOD) search space of up to

86% on average.

3.2.7. Dataset recommendation for data linking based on
intensional profiling

In this section, we discuss a candidate dataset recommendation approach

which skips the learning step and adopts the notion of intensional profile - a

set of schema concept descriptions representing the dataset [ELL 16b]. The

intuition is the following: datasets that share at least one pair of semantically

similar concepts are likely to contain at least one pair of instances to be linked

by an owl:sameAs statement. The recommendation approach consists of two

steps: (1) the identification of a cluster of datasets that share schema concepts

with respect to the source dataset, and (2) the ranking of datasets in each cluster

with respect to their relevance.

The first step identifies concept labels that are semantically similar by using

a similarity measure based on the frequency of term co-occurrence in a large

corpus (the Web) combined with a semantic distance based on the WordNet

without relying on string matching techniques [HAN 13]. For example, this

allows us to recommend to a dataset annotated by “school” and one annotated

by “college”. In this way, we form the clusters of “comparable datasets” for

each source dataset. The intuition is that for a given source dataset, any of the

datasets in its cluster is a potential target dataset for interlinking.

The second step focuses on ranking the datasets in the cluster with respect

to their importance to the source dataset. This allows the evaluation of results

in a more meaningful way and, of course, provides quality results to the user.

The ranking criterium should not be based on the amount of schema overlap,

because the potential to link instances can be found in datasets sharing 1 class

or sharing 100. Therefore, we need a similarity measure on the profiles of the

comparable datasets. We have proceeded by building a vector model for the

document representations of the profiles and computing cosine similarities.

The approach was evaluated using the current topology of the LOD as

the evaluation data. The different experiments described in [ELL 16b] show

a high performance of the introduced recommendation approach with an

average precision of 53% for a recall of 100%. Furthermore, as a result of
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the recommendation process, the user is given not only candidate datasets for

linking, but also pairs of classes in which to look for identical instances. This

is an important advantage, allowing us to more easily run linking systems such

as SILK [JEN 10] in order to verify the quality of the recommendation and

perform the actual linking (see section 3.3).

3.2.8. Discussion on dataset recommendation approaches

None of the studies outlined in [NIK 11, MEH 14, RÖD 16] have evaluated

the ranking measure in terms of precision/recall, except for [LOP 14], which,

according to the authors, achieves a mean average precision of approximately

60% and an excepted recall of 100%. However, a direct comparison to the

topic-based and intension-based approaches seems unfair since the authors did

not provide the set of considered datasets as sources and the corresponding

ranking scores or the corresponding target list. Furthermore, in line with

the considered state-of-the-art approaches, we highlight the efficiency of the

intension-based recommendation in overcoming a series of complexity related

problems, precisely, considering the complexity to generate the matching

in [NIK 11], to produce the set of domain-specific keywords as input in

[MEH 14] and to explore the set of features of all the network datasets

in [LOP 14]. Hence, in the following, we limit our discussion to the two

approaches: topic-based versus intension-based dataset recommendation.

The current version of the topic dataset profile graph contains 76 datasets

and 185, 392 topics. Working with this already annotated subset of existing

datasets is not sufficient and would limit the scope of the topic-based

recommendations significantly. In addition, the number of the profiled datasets

compared to the number of topics is very small, which in turn appears to be

problematic in the recommendation process due to the high degree of topic

diversity, leading to a lack of discriminability. One way of approaching this

problem would be to index all LOD datasets by applying the original profiling

algorithm [FET 14]. However, given the complexity of this processing pipeline

– consisting of resource sampling, analysis, entity and topic extraction for a

large amount of resources – it is not efficient enough, specifically given the

constant evolution of Web data, calling for frequent re-annotation of datasets.

The experimental results reported in [ELL 16b] show that the intension-

based approach outperforms the topic-based recommendation approach in
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terms of the considered evaluation metrics, achieving a 100% recall versus

81%, respectively, and an average precision of up to 53% versus 19%. The low

performance of the topic-based approach can be explained by the weakness

of the considered learning data – topology of LOD Cloud (2014), i.e. the

amount of explicitly declared links in the LOD cloud is certain but far from

being complete as be considered as a ground truth. Subsequently, false positive

items (recommendations that are considered as false by the evaluation data)

would have not been used even if they had been recommended, i.e. they are

uninteresting or useless to the user. For this reason, a large amount of false

positives occur, which in reality are likely to be relevant recommendations.

While the intension-based approach ensures a better performance and less

complexity, we believe that a better ground truth for the topic-based approach

may lead to much richer learning data and thus a significantly improved its

ranking performance.

3.3. Challenges of linking data

In previous sections, we have seen different methods which are proposed

for the selection of candidate datasets for linking with a given (presumably

yet unpublished) RDF graph. Provided that this task has been performed

successfully, we now have at hand two RDF graphs to link, or else to discover

the related entities across these two graphs. A relation of particular interest for

the Semantic Web community is that of identity, given by the OWL predicate

owl:sameAs. However, a given real-world entity may be described differently

or even with complementary information in different data sources. Hence,

the automatic discovery of identity links may become particularly difficult

considering the heterogeneity of data on the Web. In this section, we focus on

a number of real-world issues that may arise when comparing resources across

datasets, and we illustrate these issues by the means of a fictional example

given in Figure 3.3.

Let us imagine that the composer Ludwig van Beethoven is described by

two different data sources without making any assumption about the way the

data are structured in a general form nor about the used properties describing

the composer. When the same entity is heterogeneously described (see the

example in Figure 3.3), the comparison becomes much more complex. One

of the main difficulties stems from the fact that data may be incomplete. This
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would raise the question about identity criteria for comparison – between
which attributes is the comparison done? Variations in how such attributes

are valued or structured may lead to missing true positive links or may

produce false positive ones. As shown in Figure 3.3, the descriptions can be

expressed in different natural languages, with different vocabularies or with

different values. Hence, the comparison can be hindered due to the variations

in the expressions according to three dimensions: value-based, ontological
and logical dimension. Indeed, the linking quality improves when various

aspects of heterogeneity between two resources are handled. In the following,

we analyze the most recurrent aspects of heterogeneity by identifying a set of

techniques that can be applied to them.

Figure 3.3. Issues occurring during the linking task. For a color version
of this figure, see www.iste.co.uk/pivert/nosql.zip

3.3.1. Value dimension

In the open context of the Web, certain properties of resources are filled

by textual (string literal) values expressed in a natural language or numerical

values. Any attribute valued with textual or numerical information may

potentially raise matching issues. This characterizes the heterogeneities at the



Doing Web Data: from Dataset Recommendation to Data Linking 71

data value level. In the following, we define a list of heterogeneity types of

what we call value dimension:

1) Terminological heterogeneity. A description about an entity could present

syntactical or semantic variations with respect to another description about

the same entity. These variations concern terms, referring here to a word

or to a set of words. This heterogeneity can be expressed in: (i) variation

of terms to represent the same concept (synonymy); (ii) variation of the

meaning of a term representing different concepts (polysemy); or (iii) variation

in spelling (acronyms or abbreviations). The problems of synonymy and

polysemy can be solved using lexical databases such as WordNet [MIL 95]

which is composed of sets of synonyms called synsets where each term belongs

to one or more classes. Each synset represents a particular concept and is

accompanied by a description of the meaning it represents. Indeed, a word

should be disambiguated to be compared. The disambiguation consists of

assigning the most appropriate meaning for each word in a text according

to the context in which it is found. Many works proposed solutions allowing

us to find the full form of an acronym or an abbreviation – among others,

consider [YAM 11, LI 15]. This issue can be observed between “Ludwig van

Beethoven” and “L.V. Beethoven” in our example (Figure 3.3). As we can

see, the full name values of the two instances are distinct with the first source

preferring to name a person by his/her first name and last name, while in the

second source, a person is named using the initials of his/her first name and

the full last name. Indeed, the comparison between such values becomes much

more complex.

2) Lingual heterogeneity. Note that users sometimes publish their data in

their native language, leading to a plethora of natural languages used in

data descriptions. To better clarify the impact of this fact on the matching

decision, consider the example of BNF (French National Library) [SIM 13]

and Freebase [BOL 07] that make their existing data available as RDF in

their own language, i.e. in French and English respectively. Thereby, if we

consider the same entity of Ludwig van Beethoven, we may end up not being

able to compare correctly (if it is not impossible) its two representations

particularly when applying string similarity measures. This problem is of

crucial importance in the open Web of data. Hence, it becomes necessary

to discover links among RDF data with multilingual values. To overcome

this problem, a few studies have proposed methods for automatic cross-

lingual data linking [SCH 09, LES 14, LES 15], considerably reducing the

complexity of the comparison task. Machine translation is performed by



72 NoSQL Data Models

[SCH 09, LES 14] to make two descriptions in different languages comparable

using the Google Translator API16 and the Bing Translator API17, respectively.

A more recent study [LES 15] proposed a data linking method based on the

BabelNet multilingual lexicon to bridge the language gap. The authors define

the resources as vectors of BabelNet identifiers where each of them represents

a sense (concept identifier) of a term. The similarity between these vectors is

then computed. TR-ESA [NAR 17] is a cross-lingual data linking tool which

matches resources whose descriptions are written in different languages. Each

resource description is translated into English using the Bing Translator API18.

Then, a Wikipedia-based representation (a set of concepts) is generated for

each resource. Then, these representations are indexed. The main drawback

of such approaches is that they do not deal with acronyms in the compared

descriptions.

The difficulty of this issue is demonstrated in Figure 3.4, where two

resources with multilingual object values are compared. In fact, the data

property values in this example are expressed in English and in Chinese

(Traditional), which makes it impossible to find a correspondence using

string-based similarity metrics without using machine translation or external

multilingual resources.

3) Trangressions of best practices. Data representations on the value

level can differ depending on the degree to which the Semantic Web best

practices are respected in the data publishing process. In Figure 3.3, this

can be illustrated through the titles of Beethovens work, where one of them

(“Moonlight sonata”) is annotated by the language in which it is given but

not the other (the presence/absence of a language tag). Another problem

may occur on the values by introducing inappropriate symbols that convey

no information. A good practice would be to ignore what we do not know

due to the acceptance of the open-world assumption (missing information is

not necessarily wrong). This practice is not always respected, where symbols

such as “#” can be used to indicate an unknown value as for example when

comparing the object values “29-07-1990” and “##-##-1990”. Indeed, this may

hinder the matching decision. Recently, best practices for the creation, linking

and use of multilingual linked data were elaborated by the multilingual linked

open data community group19.

16 http://code.google.com/apis/ajaxlanguage/.

17 http://datamarket.azure.com/dataset/bing/microsofttranslator.

18 http://datamarket.azure.com/dataset/bing/microsofttranslator.

19 https://www.w3.org/community/bpmlod/.
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Figure 3.4. RDF resources described in different languages

4) Value-type heterogeneity. An efficient linking tool is able to deal with

different value types expressing the same information. This heterogeneity

type concerns differences in encoding of data. Often values are expressed in

different formats or by using different value types, as for example, representing

an “age” value as a string (i.e. “twenty-six”) or as a number (26). This

property describes the month of the year part of the birth date of a person

(e.g. February). It is included mostly to ease problems related to structural

heterogeneity in the representation of the birth date values. For example,

some sources would not represent the date as a date format (consider the

example of “17-12-1770”), but would rather represent the same information

as a string (“17 December 1770”). The main challenge is to provide a

means for semantic unification. The birth date would impact the quality of

matching results if it is not taken into account. For instance, a possible

solution consists of retrieving individual resource values in the RDF graph,

transforming different object values in a given format, and standardizing

the retrieved information to compare them in a uniform manner. Two data

generators aiming at evaluating whether the data linking tools deal with

this issue have been proposed: the Semantic Publishing Instance Matching

Benchmark (SPIMBENCH) [GAN 15] and LANCE [SAV 15]. They aim to

produce different benchmarks by transforming the source instances based on

their values, structures and semantics. Some of the problems addressed by both

SPIMBENCH and LANCE are the use of different dates (“1948-12-21” vs.

“December 21, 1948”), genders (“Male” vs. “M”) and number formats (“1.3”

vs. “1.30”).



74 NoSQL Data Models

3.3.2. Ontological dimension

This dimension refers to variations with respect to the properties or classes

of instances to compare. We identify four main heterogeneity problems:

1) Vocabulary heterogeneity. Classes and properties are often described by

using different vocabularies by different data publishers, because the semantics

of a given class or a property can be interpreted differently according to

the application and the intension. This problem is even more complicated in

the context of the open Web of data where all resources are not necessarily

described in the same manner. Indeed, different data publishers may differently

interpret the semantics of attributes when they decide how to model their data.

Indeed, it is not uncommon that the open nature of the Web is one of the main

causes of different uses of properties. In fact, anyone can define their own

ontology and can describe their own classes. Let us consider the example of

the property providing the information about the full name of Beethoven.

< i1, foaf:name, “Ludwig van Beethoven”>
< i2, vcard:name, “Ludwig van Beethoven”>

< i3, foaf:name, “Beethoven”>

For a given data source, such information could be described by the

property foaf:name (i1 and i3), while for another data source, it could be

described by the property vcard:name (i2).

Description Vocabulary Property

Full Name contact20 http://www.w3.org/2000/10/swap/pim/contact#fullName

FOAF21 http://xmlns.com/foaf/0.1/name

DBpedia22 http://dbpedia.org/ontology/name

VCard23 http://www.w3.org/2006/vcard/ns#Name

Table 3.1. Vocabularies describing the full name of a person

Beyond the fact that the same information can be described by different

properties (see Table 3.1), the same property can be used to describe different

information. In fact, the instances have been described with the same property

to describe the full name and the last name, respectively. Yet in both cases, the

use of the property foaf:name is correct regarding the FOAF ontology20. Given

20 http://xmlns.com/foaf/spec/#term_name.
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the large amount of existing vocabularies, it becomes necessary to propose a

solution aimed at finding correspondences between properties conveying the

same information. We note that the linked open vocabularies21 (LOV) are a

catalog containing more than 600 vocabularies in the linked open data cloud. A

vocabulary in LOV provides a set of terms (classes and properties) describing

a given type of entities. LOV facilitates the reuse of vocabularies through a

SPARQL endpoint22 for retrieving types and their properties. LOV is a good

initiative, but note that, to date, it is not exhaustive and has a characteristic

of being incomplete (e.g. Yago, Freebase or MusicBrainz are not included in

LOV).

2) Structural heterogeneity. The description of an entity can be done at

different levels of granularity. To take a brief example, consider the birth

date of Ludwig van Beethoven. It can be described in a single information

field (as a value of the property vcard:bday23) “17 December 1770” or split

over several information fields (multiple properties) “17” (day), “December”

(month) and “1770” (year). The last three values are parts of the property

vcard:bday. Comparing two instances presenting this heterogeneity may

impact the matching decision. A possible solution consists of identifying the

sub-properties (day, month and year) as belonging to a given type (date)

and aggregating them or in decomposing one value into several values

to make the properties comparable at the same level of granularity. To

the best of our knowledge, the problem of structural heterogeneity is not

treated in the literature. However, it is partially resolved using inverted

indexes and NLP (natural language processing) techniques in some data

linking approaches [JEN 10, LES 14, LES 15, RON 12, SHA 16]. The method

consists of indexing each resource by its literals collected at a distance24

n >= 1 in the RDF graph. Then, a vector space model is used to represent

each resource description as word feature vector. The resources sharing similar

vectors (similar words) are considered to be equivalent or to be linking

candidates. By doing so, the resources are compared with respect to their

literals without taking into account the properties describing them. The main

drawback of this process is the loss of precision when comparing resources

21 http://lov.okfn.org/dataset/lov/.

22 http://lov.okfn.org/dataset/lov/sparql.

23 https://www.w3.org/2006/vcard/ns#bday.

24 A distance in an RDF graph is defined as the minimal number of edges (properties)

connecting two resources or a resource and a literal.
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represented as bundles of words instead of comparing their literals in pairs

(those defined with equivalent properties).

3) Property depth heterogeneity. This type of heterogeneity regards the

difference in property modeling. In a given dataset, a property can be specified

directly (at a distance n = 1) through a literal value, while in another dataset,

the same information is given by a longer property chain including several

triples. In our example (see Figure 3.3), we can observe this problem between

the two resources, where the name of the country of birth is a literal that

is directly assigned to the resource describing Ludwig van Beethoven, while

for the other resource, the same value is assigned through a literal to another

resource, which is the URI of the country itself. In fact, we can observe that for

the first resource, the country of birth is defined through a data type property,

while for the second one, it is defined through an object property which is

described by the same value of place of birth “Germany”. This problem can

also be solved by indexing the scope of literals describing each resource.

Namely, for each entity the distance to which the literals are collected can be

set. However, this is a limitation given the fact that in this context, the further

we get from the resource, the more likely it is that we collect noisy information.

4) Descriptive heterogeneity. A resource can have several types (concepts)

or it can be described with more information (a larger set of properties)

in one dataset than in another, as we can see in our example (see Figure

3.3). We can observe that a resource contains more information denoted

by a descriptive text (biography) about Ludwig van Beethoven through the

property -:hasDescription, while the other resource, referring to the same

real-world person, is described by a much more austere set of properties.

It is obvious that comparing these two resources by this property will not

identify any equivalence between them, namely for approaches considering

the whole description (all the literals) of a resource or for approaches relying

on key properties to compare the resources. In fact, for the former approaches

[LES 14, LES 15], the property -:hasDescription decreases the similarity

value between the two resources, while it is identified as a key property by

most of the second approaches [SYM 14, SYM 11, SOR 15]. A key is a set

of properties for which there is no two resources sharing the same values

for these properties. We note that for a given dataset, several keys may be

identified where several combinations of properties uniquely identify the

resources.
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Let us consider the example given in Figure 3.5 of two musical works mw_1
and mw_2 in an RDF dataset. Even if these works seem similar (the same title

and the same composer), they refer to two different entities, hence the need to

identify which properties, called keys, to compare in order to decide whether

they are equivalent work or not. Relying on the key definition, we can deduce

that the property catalogue is a key. However, a question that arises is: what
about the property genre? Discovering keys under the open-world assumption
(OWA) considers that a property is a key if there are no two resources sharing at

least one common value for this property [SYM 14, SYM 11]. On the contrary,

discovering keys under the close-world assumption (CWA) considers that a

property is a key if there is no two resources sharing all the values for this

property [SOR 15]. The former supposes that the description of a dataset is

complete, while the latter does not.

Figure 3.5. Property keys identification in an RDF dataset. For a color
version of this figure, see www.iste.co.uk/pivert/nosql.zip

3.3.3. Logical dimension

This heterogeneity problem refers to the fact that the equivalence between

two pieces of information across two datasets is implicit but can be inferred

by the help of reasoning methods. We outline the following two main

heterogeneity problems:

1) Class heterogeneity. This type of heterogeneity regards the class

hierarchy level. This is typically the case for two resources belonging to

different classes for which an explicit or an implicit hierarchical relationship
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is defined (the concepts “Person” and “Composer”, in Figure 3.3, show this

issue). Moreover, two instances referring to the same object can belong to two

different subclasses of the same class.

2) Property heterogeneity. At this level, the equivalence between two values

is deduced after performing a reasoning task on properties. Two resources

r1 and r2 referring to the same entity can have two properties that are

semantically reversed (i.e. the properties composed and composedBy). In this

case, these two properties convey the same information, as shown in the

example in Figure 3.3:

< r1, composed, “Moonlight sonata” >

< r3, composedBy, r2 >

< r3, title, “Sonate au clair de lune” > .

Here, the instance comparison process has to go beyond the value and

property levels by comparing an explicitly specified value and an implicitly

specified one between the two entities. Another example of this problem is

given by two instances having “26” and “29 July 1990” as values of age and

birthdate properties, respectively.

3.4. Techniques applied to the data linking process

Identity link discovery (also called linkset discovery) requires a three step

process to identify equivalent resources across different datasets: prepare

data (preprocessing, step 1), align resources (instance matching, step 2) and

fix erroneous links generated between some of them (post-processing, step

3). First, the resources need to be represented in a uniform manner. This

preprocessing proves necessary when we deal with different vocabularies,

when resources are valued by using different languages, or when the number

of resources and properties to be compared is too high. To establish links,

it is important to compare resources regarding their values. However, the

comparison can be done at different levels going from the URI of resources

to the description of their neighborhoods in the RDF graph. Finally, once

equivalent resources are connected, some systems perform an additional step

to evaluate the generated links and therefore to filter some of them identified as

erroneous. Several tools and approaches have been surveyed in a recent work

[ACH 16], which classified them along these three main steps of data linking

process. We note that for each of these steps, a set of techniques has been used
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by different data linking tools. An overview of several of the commonly used

techniques is presented in the following section.

3.4.1. Data linking techniques

Various techniques from different computer science fields are adapted and

applied to the data linking problem. We outline several of the main groups

of techniques, drawing the readers attention to the fact that a single approach

commonly combines several techniques from different groups in its workflow.

These techniques, used at different steps of the linking task, are shown in

Table 3.2, which summarizes and compares the main data linking tools and

approaches.

Machine learning groups a set of techniques that are applied to infer class

properties of data instances based on statistical knowledge. These techniques

are divided in two main groups – supervised and unsupervised learning

methods. In supervised learning, the algorithm is given examples in order to

learn a function that allows for the categorization of an unknown individual

into one out of a set of predefined classes. Unsupervised learning, also

known as clustering, groups individuals together in order to form classes,

without prior class knowledge. Note that these techniques do not require a
priori linguistic knowledge and they are applied on corpora for which no

external resources (for example, dictionary or ontology resources) have been

developed.

Clustering aims at forming groups of data items based on their similarity

with respect to their properties. These entities may be of different types:

terms, documents or any given data entity represented as a set of features.

In the Web data field, resources sharing similar properties are likely to be

interlinked. Therefore, applying clustering methods on a set of instances

from different datasets reduces the search space of matching candidates. In

[RON 12, ARA 11], the clustering algorithm is used based on the assumption

that the resources referring to the same entities are often similar in their

description. Both of them start by grouping resources whose distance is

very small. Then, their matching algorithm is applied iteratively on similar

candidate resources, avoiding the comparison of dissimilar ones.

Binary classification is a supervised learning technique, which consists of

assigning elements to one out of two given classes based on training data.

In data interlinking, this technique can be used to assign pairs of resources
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into one of the two predefined classes: (1) a positive class, which defines the

category of pairs of resources to be matched (the resources of each pair are

considered as identical); (2) a negative class, where the resources of each pair

are considered as different (they will not be interlinked). As sufficient amount

of training data is provided, this technique can be used to infer the class (as a

match or non-match) of an unseen pair of resources. In [RON 12], aside from

the manually generated links, existing matching instance pairs in LOD can also

be used to train the classifier.

Linguistic techniques: These techniques perform a linguistic analysis

of the textual information describing resources based on knowledge of the

language and its structure. Most of the linguistic techniques exploit syntactic,

lexical or morphological knowledge. These techniques can be used in the data

interlinking task for data preprocessing, addressing a number of problems,

such as polysemy or multilingualism.

Word-sense disambiguation (WSD) is a problem of the NLP field, which

consists of identifying the appropriate meaning of a word with respect to its

context (“apple” may have two different senses depending on the context - a

fruit or a company). When performing data linking, this technique can be used

to render entities comparable by resolving polysemous terms. In particular,

the tools applying this technique [LES 15] explore contextual information to

assign the appropriate meaning for a term.

Lexicon resource exploitation: a lexicon is a linguistic resource, commonly

used in information retrieval, defining terms or structured knowledge bases.

For instance, WordNet [MIL 95] is a lexical database of English words

organized into synsets (sets of synonyms) where each synset contains a set

of semantically close words and their grammatical categories (noun, verb,

adjective and adverb). Semantic relations between synsets, such as hypernymy

or meronymy, are defined explicitly. This permits word sense disambiguation,

and also measuring semantic distances between terms. Multilingual lexical

databases can be applied to manage multilingualism by describing all RDF

entities across two data sets via a single pivot language [LES 15].

Machine translation is an NLP method, which consists of automatically

translating a piece of text from one language to another. In data linking,

applying this technique is very important if we have instances described in

different languages. Often, textual information is compared across resources

and the similarity measures that exploit this information take, input terms in

one single language. Through machine translation, instances, or their textual
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descriptions, are made comparable (see lingual heterogeneity in section 3.3 for

more details).

String matching: using this technique, we compute the similarity D (often

with D ∈ [0, 1]) between two strings. The result D = 1 means that we have

an exact match between the two strings. If D > σ (σ ∈ (0, 1)), then we

have an approximate matching between them with the value D being used

as a confidence value. In data linking, this technique is commonly used to

measure the correspondence of a resource’s property values, in the case of

string literals. We note that most matching approaches apply this operation (see

Table 3.2). In the example hereafter, we have two RDF triples that describe the

same resource, the composer Ludwig van Beethoven:

〈〈http ://..../Ludwig_van_Beethoven〉, name, “L.V. Beethoven”〉
〈〈http ://..../Ludwig_van_Beethoven〉, name, “L. van Beethoven”〉
The string matching algorithm computes the similarity value between the

two strings “L.V. Beethoven” and “L. van Beethoven”. For this purpose,

several measures have been proposed. As an illustration, we present three of

the most commonly used measures.

– Levenshtein distance or Edit distance [EUZ 07] is the cost (i.e.

the minimum number of operations) required to transform one string to

another. Several edit operations are defined, such as: insertion, deletion or

substitution. For instance, the Levenshtein distance between the words A =
“L.V. Beethoven” and B = “L. van Beethoven” is 3 and it is computed as

follows:

• adding the whitespace character between the first character “.” and the

character “v” of the word A;

• substitution of the second character “.”, of the word A, by character “a”;

• adding the character “n” (after the added character “a”) to the word A.

– Jaccard distance [EUZ 07] is the ratio between the number of characters

in common between two strings on the total number of characters, which is

defined by the formula:

J(A,B) =
|A ∩B|
|A ∪B| ,

where A and B are the two considered strings. For instance, the Jaccard

similarity coefficient between the two words A = “L.V. Beethoven” and

B = “L. van Beethoven” is computed as follows:

J(“L.V. Beethoven”, “L. van Beethoven”) = 13÷ 14 = 0.92.

http://..../Ludwig_van_Beethoven
http://..../Ludwig_van_Beethoven
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– Jaro distance [EUZ 07] is based on the common characters between two

strings A and B. It is defined by the formula:

J(A,B) =
1

3
(
m

|A| +
m

|B| +
m− t

m
),

where |A| and |B| are the length of the strings A and B, respectively, m denotes

the number of corresponding characters and t is the ratio of their transpositions.

In other words, the number of all matching characters (in different sequence

order) between the two words defines t. Giving the example of two words A =
“L.V. Beethoven” and B = “L. vanBeethoven” : m = 13 (9 characters are

matched) and t = 0. Thus, the Jaro distance between these words is computed

as follows: (1÷ 3)× ((13÷ 14) + (13÷ 16) + ((13− 0)÷ 13)) = 0.91.

Graph-based: a graph is defined as a set of entities called vertices, and a

set of edges that are defined as pairs of vertices. We often think of an RDF

data set as a graph formed by a number of connected triples, with its entities

being the vertices and its predicates the edges. In data linking, graph traversal

techniques from graph theory [BON 76] are called upon in order to collect

information that can be used to describe resources and further compute the

similarity between them. For each resource, the information collected where

the graph traversal distance is greater than 1 is called contextual knowledge.

The approach proposed by Raimond et al. [RAI 08] matches two resources,

relying on the similarity between them and also on the similarity between their

neighbors.

Keys identification: in data linking, for a given class, a key is identified

by a property or a set of properties such that there do not exist two instances

that refer to different real-world objects and which have the same values for

all of these properties. Therefore, two instances, belonging to the same class,

across two datasets, can be matched with an owl:sameAs link if they share

the same values for the class key. Key identification reduces considerably the

search space and is often applied as a data preprocessing step (see descriptive
heterogeneity in section 3.3 for more details).

Feature-based techniques [TVE 77]: this group of techniques of data

representation, used in information retrieval, consists of representing a

document (or any other data element for that purpose) in a model by

using a set of features (terms) that describe this document. In the context

of data interlinking, this technique is used to index each resource by a
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document of terms (called virtual document or pseudo-document), in which

each term is a part of a string literal collected within a given distance to

the resource in its RDF graph [LES 14, LES 15, RON 12]. Two documents

D1 = {t1, t2, .., tn} and D2 = {t′1, t′2, .., t′m} are represented by vectors

such as D1 = [v1, v2, .., vo] (o = n if n > m or o = m otherwise) and

D2 = [v′1, v′2, .., v′o] (o = n if n > m or o = m otherwise), where vi (v′i)
represents the weight of the term ti (t′i respectively) considering the document

D1 (D2 respectively). Here, the objective is to provide a similarity comparison

in a structure, called similarity vector, that will be understood and processed

by learning algorithms. In data interlinking, we distinguish two main feature

representations:

– Vector model [SAL 75]: for the similarity computation between

documents, one of the best known weighting schemes and commonly used

is TF–IDF (term frequency–inverse document frequency). It is based on the

frequency (number of occurrences) of a term in the document and across the

set of documents in the corpus. To compute the distance between pairs of

documents (i.e. resources), several similarity measures can be used. The cosine

similarity [EUZ 07] is the most common one; it calculates the cosine of the

angle between two vectors.

– Boolean model: in this representation type, the similarity vector v
produced is binary, i.e. each similarity value is either 0 or 1. The value 1 means

that we have an exact match between two terms ti and t′i.

3.4.2. Discussion

Table 3.2 provides a comparison between the surveyed tools/approaches

classified according to the three steps of a data linking process presented

in section 3.4, i.e. preprocessing, data linking and post-processing steps. As

we can see, each of them can perform more than one step. We refer to such

tools/approaches as hybrid. For each step of a matching process, an approach

performs a set of techniques. Moreover, each tool/approach is described by its

principle (inputs and outputs), the specificity of its application to a particular

field (music, LOD), its management of multilingualism, and, in the case where

it is implemented in a tool: its degree of automation and its participation in the

Ontology Alignment Evaluation Initiative25 (OAEI) campaign. In this table,

the symbol “/” means that the information is unavailable.

25 http://oaei.ontologymatching.org/.
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We can note that string matching techniques are used by every approach in

the data linking step as they are the obvious techniques for comparing resource

values. For preparing data in the preprocessing step, the used techniques

differ according to the purpose of the approach that can be either search
space reduction or representing the resources in a uniform manner. However,

it seems clear that there are few approaches performing the final step of

post-processing. This can surely be explained by the fact that most of the

approaches trust their process of matching. The same remark applies, in fact,

to multilingualism where only few approaches tackle this issue. However, it is

obvious that this criterion presents a crucial problem which will be resolved

particularly to match equivalent resources described in multiple languages.

Finally, we note that, compared with the total number of proposed instance

matching systems, very few of them participated in the OAEI evaluation

campaign.

3.5. Conclusion

Efficiently discovering candidate datasets for linking and the links between

these candidates are both challenging tasks, given the size and diversity of the

Web of data. In this chapter, we first focus on the identification of candidate

datasets for data linking where we provide an overview of various existing

approaches leading to a comprehensive discussion on the topic. Given a source

data set to be linked, and once the target dataset is identified, it is important to

deal with different heterogeneity problems that may occur between these two

datasets, such as differences in descriptions on the value, ontological or logical

level in order to compare the resources they contain efficiently. In this context,

we identified and then provided the possible solutions to these heterogeneities

that exist in the literature.

The datasets connected by owl:sameAs links form a non-oriented graph of

very large size. The absence of strong connectivity (due to lack of owl:sameAs
links) prevents the use of the LOD as a ground truth to evaluate the quality of

results proposed by a dataset recommendation system. The identification of the

related components in this graph is of great importance in order to allow the

recommendation systems to be evaluated, as these related components may

constitute benchmarks for evaluating the quality of referral systems. Hence,

an open issue with regard to the candidate dataset recommendation task is to

develop a reliable and complete ground truth in order to provide a common
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benchmark to the community. One possible solution may be to use crowd

sourcing techniques.

On the data linking level, we provided an overview of the different

techniques applied on each step in service of the global linking task.

We consider the linking process as a pipeline composed of preprocessing,

data linking and post-processing steps. Finally, we described and compared

different state-of-the-art approaches and tools according to these steps and to

the surveyed techniques. As a conclusion to our study, we note that during

the past years, significant progress has been made in the field with numerous

off-the-shelf tools now available to the data community at large. However,

we also outline that more effort is needed in order to ensure matching tools

can cope with certain more difficult and less studied heterogeneity types.

Particularly, the value, ontological and logical heterogeneity dimensions must

be paid more attention in future work. The challenge of linking multilingual

data also remains largely unexplored.
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4

Big Data Integration in Cloud
Environments: Requirements,

Solutions and Challenges

4.1. Introduction

Over the past years, two important concepts have emerged in the computing

world: Big Data and Cloud Computing. According to the NIST Big Data

Public Working Group1, Big Data is data that exceed the capacity or capability

of current or conventional methods and systems. In [ZIK 11], IBM defines

the term Big Data as information that cannot be processed or analyzed using

traditional processes or tools. It is mainly based on the three-Vs model, where

the three Vs refer to the volume, velocity and variety properties. We define

these properties as follows:

– Volume: this denotes the processing of large amounts of information.

Over the past decades, several high technologies have appeared and they

accompany people in their everyday life. If they can track and record

something, they typically do it. For instance, simple actions (e.g. taking your

smartphone out of your pocket, checking in for a plane, scanning your badge

into work, buying a song on iTunes, etc.) generate events and data. Managing

this big volume of data may be overwhelming for an organization and several

challenges arise. To deal with this, we can find a plethora of modern solutions

Chapter written by Rami SELLAMI and Bruno DEFUDE.

1 http://bigdatawg.nist.gov/uploadfiles/M0392v13022325181.pdf.
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to store, manage and analyze data in order to gain a better understanding of

our data and use it efficiently.

– Velocity: this signifies the increasing rate at which data flows. IBM

considers that this property means how quickly the data is collected, stored

and retrieved [ZIK 11]. It is noteworthy that the velocity follows the evolution

of the volume characteristic and, where it concerns fast-moving data, we

can call this streaming data or complex event processing. Whether we can

handle the data velocity or not, it will help researchers and business experts in

making valuable decisions and using data efficiently. To deal with data velocity

issues, some researchers suggest conducting data sampling and data streaming

analysis.

– Variety: this refers to the diversity of data stores and data structures. With

the emergence of new technologies (e.g. Cloud Computing, sensors, smart

devices, social networks, etc.), the resultant data have become complex since

it is a combination of structured, semi-structured and unstructured data. To

deal with this characteristic, we today find several kinds of data stores (e.g.

relational data stores, NoSQL data stores, etc.) allowing us to store those

heterogeneous data. In addition, there exist plenty of approaches and solutions

using data integration based on either a mediator/wrapper or a unique API, and

supporting heterogeneity.

In addition to these three characteristics, several people have also proposed

adding more Vs to this basic definition. For example, we can cite the veracity

that is widely proposed and represents the quality of data (accuracy, freshness,

consistency, etc.). There is also the data volatility representing for how long

the data is valid and for how long it should be stored.

In parallel with the emergence of the Big Data era, Cloud Computing has

appeared as a new computing paradigm enabling on-demand and scalable

provision of resources, platforms and software as services. Cloud Computing

is often presented at three levels [BAU 11]: Infrastructure-as-a-Service (IaaS),

giving access to an abstracted view of the hardware; Platform-as-a-Service

(PaaS), providing programming and execution environments to the developers;

and Software-as-a-Service (SaaS), enabling software applications to be used

by the Cloud’s end users.

Owing to its scaling and elasticity properties, Cloud Computing provides

interesting execution environments for several emerging applications such

as Big Data (data-intensive). These applications interact with various
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heterogeneous data stores and question the “one size fits all” data management

principles [STO 05]. This promotes the use of specialized Cloud data

management infrastructures, also known as NoSQL systems. These solutions

are able to perform orders of magnitude better than the traditional (and

generic) relational database management systems (DBMS). This implies that

data-intensive Cloud applications usually need to access and interact with

different relational and NoSQL data stores with heterogeneous APIs, data

models and query languages. A possible remedy to this high heterogeneity

between data stores is data integration [LEN 02, DOA 12]. This refers to

a set of techniques and approaches used (1) to combine data residing in

different data stores and (2) to provide users with a unified view of these data.

This unified view is called in general global schema. There are a plenty of

techniques and approaches which allow data integration, but we can roughly

classify them into two categories: mediation-based systems and federation-

based systems. Mediation is a classical approach for querying heterogeneous

sources and it is usually based on two main parts: the mediator and the adapter

(also called the wrapper) [GAR 97]. This kind of system is based on a global

schema and there are some substantial works proposing a schema mapping-

based solution to integrate heterogeneous data. We also find the federated

database systems [HEI 85, SHE 90]. These are database management systems

that transparently map multiple autonomous database management systems

into one single unit.

Integrating Big Data today is very challenging and cumbersome. The

classical data integration techniques are not suitable and do not support the new

requirements of applications in a Big Data and Cloud Computing context. For

example, classical approaches do not support NoSQL data stores and do not

consider Big Data characteristics during query optimization. For this purpose,

we propose to focus, in this chapter, on the existing solutions of the state of the

art supporting Big Data integration in Cloud environments.

The rest of this chapter is organized as follows. Section 4.2 analyzes

Big Data integration requirements in Cloud environments. We use these

requirements to study and analyze the state of the art in sections 4.3, 4.4, 4.5

and 4.6. In each section, we present a set of substantial works and conclude

with a comparative analysis of them all. Section 4.7 gives a global analysis

and comparison of all of the works and ends with the presentation of some

open issues. Section 4.8 provides a conclusion.
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4.2. Big Data integration requirements in Cloud environments

Most of the data-intensive applications deployed in cloud environments

question the “one size fits all” [STO 05] data management principles and

promote the use of specialized Cloud data management infrastructures, also

known as NoSQL systems. These solutions are able to perform orders of a

magnitude that is better than the traditional (and generic) relational DBMS.

NoSQL, which stands for Not only SQL, refers to a new generation of

data stores. Unlike relational data stores, they are not standardized. Indeed,

each NoSQL data store has its own data model, its own query language, its

own API, etc. They are mostly open-source, schema-less, largely distributed

database systems that enable rapid, ad-hoc organization and analysis of

extremely high-volume, disparate data types [SAD 12]. They mainly come

from web companies developing very highly intensive web applications such

as Facebook, Amazon and Twitter. NoSQL data stores are sometimes referred

to as Cloud databases, non-relational databases or Big Data databases.

To store and query data, each NoSQL data store has its own mechanism.

We can find some NoSQL systems that provide a simple interface/API. Some

others use declarative query languages (e.g. SQL-like, SPARQL-like, etc).

NoSQL data stores are classified into four families of data stores depending

on their underlying data model: graph, key/value, document and column.

For example, CouchDB, MongoDB and Cloudant belong to the family of

document data stores.

Moreover, to support massive data, new distributed models of computation

such as Map/Reduce [DEA 04] or Spark [ZAH 10] have been proposed,

allowing data-parallelism at a very large scale. These models are implemented

into the Hadoop software platform [WHI 15]. Hadoop is the leading

open-source platform for Big Data, including a large set of tools which support

Big Data processing: data ingestion tools such as Squoop, storage of Big

Data in file systems (HDFS) or in structured data stores (such as Hive),

batch processing (Map Reduce or Spark), stream processing (Apache Storm or

Spark Streaming) and declarative languages such as Pig [OLS 08] or HiveQL

[THU 09].

Against this background, readers may notice the high heterogeneity

between both (1) the different NoSQL data stores and (2) the relational,

Hadoop-based and NoSQL data stores. This heterogeneity is a barrier to the

users of these data stores since they should find capabilities of each data
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store with respect to their requirements. Then, they should be able to decide

which data store to choose. For various and specific requirements, users are

sometimes obliged to interact with multiple data stores at the same time. This

phenomenon is popularly referred to as the polyglot persistence. Hence, the

process of data store discovery and selection becomes more sophisticated. As

a first requirement for Big Data integration, we emphasize the following:

R1: automatic data store selection and discovery. In general, Cloud

environments support several data stores for each category of data store

(relational, NoSQL and Hadoop-based). For instance CouchDB as an

implementation for a document data store and MySQL and Postgres for

relational data stores. The deployment of an application has to take into

account the discovery and the selection of the specific data stores to use.

Finally, the process of deploying these data stores together with the application

may be quite complex and automation tools are needed.

Figure 4.1. Using multiple data stores in a cloud environment

When the developer discovers and selects multiple data stores, it is

necessary to integrate these stores in order to cover the heterogeneity between

the data. In Figure 4.1, we show an example of this situation in which a

scientific social network interacts with four heterogeneous data stores: one

relational data store and three NoSQL ones (i.e. a key/value, a document and
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a graph). The main advantage would be to use specialized data stores, well

adapted to the specific requirements of the scientific social network. More

precisely, we expect to have:

– one collection named Person describing researchers’ personal data and

their affiliations stored in a relational data store;

– one collection named Dblp describing articles with their meta-data and

full text stored in a document data store;

– one collection named ConferenceRanking describing the rank of

conferences stored in a key-value data store;

– one collection named ScientificRelationship describing the different

relationships between researchers stored in a graph data store. In this example,

the querying of the collection ScientificRelationship will be supported by a

graph-based query language that will be more adapted and expressive than

SQL, for example.

It is quite complex and tedious for programmers to interact with each data

store using its native API and query language (in this example they are very

different). The second requirement is R2: unique access for all data stores.

This can be supported, for example, by a unique API capable of manipulating

all data stores in the same way that the JDBC API is capable of manipulating

all relational data stores.

Even if requirement R2 is fulfilled, the programmer is faced with an

important number of data stores and he/she has to explicitly interact with

each data store independently. Against this, we define the third requirement,

which is R3: transparent access for all data stores. For example, let us

suppose that the scientific social network at some point needs to retrieve

the affiliation and the name of authors with at least one paper published in

an “A” ranked conference. In our scenario, it is quite challenging since it

involves one relational and two different NoSQL data stores. In fact, since

Dblp, ConferenceRanking and Person use different data models, the developers

have to write a program (e.g in Java) to interact with each data store with

proprietary APIs and implement the join operation in memory using iterations.

This remains (1) purely programmatic, (2) not optimal and naive and (3) time

consuming. If all of the data stores are in some way integrated in a “global

schema”, it is possible to use a declarative language such as SQL to express our

query as a combination of joins between the three collections and a selection
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on the rank attribute. In the context of Cloud Computing and Big Data, it is

not so easy because some data stores can be schema-less (e.g NoSQL data

stores or Hadoop’s data store as HDFS) and do not support a declarative query

language.

Global queries, which are queries targeting data from different data

stores, need a specific engine for processing and optimizing their execution.

Considering the Big Data and Cloud context, optimization needs to consider

new criteria such as minimizing data movement between nodes and data

transformations. The fourth requirement is R4: global query processing and
optimization.

4.3. Automatic data store selection and discovery

4.3.1. Introduction

Choosing one or multiple data stores based on data requirements is

a very important step before integrating heterogeneous data stores and

deploying and running applications in a Cloud environment. In this context,

requirement R1: automatic data store selection and discovery can be refined in

sub-requirements R11: definition of the application needs and requirements
towards data, R12: exposure of data stores capabilities and R13: definition of
matching and negotiation techniques between the application needs and data
store capabilities.

In this section, we present the current state of the art. There are some

works which propose only solutions based on the use of models (e.g. contract,

manifest, XML schemes, etc.) [CAR 12, SNI 12, ZHA 12]. In general, these

solutions are standards used on the Cloud. Their models are used to express the

application requirements and the data services capabilities. These solutions

do not enable effective matching techniques (i.e. the sub-requirement R13).

Unlike these approaches, we nowadays find solutions which enable the three

sub-requirements at the same time [RUI 11, RUI 12, TRU 11, TRU 12, VU 12,

WIT 12, SEL 15].

4.3.2. Model-based approaches

Cloud Application Management for Platforms [CAR 12]: CAMP is a

specification defined for application management, including packaging and
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deployment, in the PaaS level of Cloud environments. Indeed, CAMP provides

the application developers with a set of interfaces and artifacts based on the

REST architecture in order to manage the application deployment and their use

of the PaaS resources. Concerning the data storage/application relationship,

this standard allows us to discover the application needs and the data store

requirements. The PaaS resource model of CAMP focuses on defining the

capabilities of either applications or data storage resources. These resources

are Platform, Assembly Template, Application Component Template, Platform
Component Template and Capabilities and Requirements.

Cloud Data Management Interface [SNI 12]: The Storage Networking

Industry Association (SNIA) has defined a standard for IaaS in the Cloud.

This standard is referred to as the Cloud Data Management Interface (CDMI).

Based on the REST architecture [RIC 13], CDMI allows us to create, retrieve,

update and delete data in the cloud. In addition, it enables us to describe and

discover the available capabilities of the cloud storage offerings but at a lower

level (it is more infrastructure-oriented than platform-oriented). Hence, users

need to complement it using the data stores proprietary API in the PaaS level.

An ontology-based system for Cloud infrastructure services discovery
[ZHA 12]: Zhang et al. propose the Cloud Computing Ontology (CoCoOn)

which enables us to denote functional and non-functional concepts, attributes

and relations of infrastructure services in Cloud environments. Using the

CoCoOn ontology, Cloud providers expose a description of their services.

In addition, they propose Cloud Recommender, which is a system which

implements their ontology in a relational model. This system enables the

selection of infrastructure services using a single SQL query to match user

requests to the service descriptions. Although their solution is interesting, users

cannot discover multiple resources in a single query. The matching is also very

simple.

4.3.3. Matching-oriented approaches

An automated approach to Cloud storage service selection [RUI 11,
RUI 12]: Ruiz-Alvarez et al. propose an automatic approach to selecting a

cloud storage service according to the application requirements and the storage

services capabilities. For this purpose, they define an XML schema based on
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a machine-readable description of the capabilities of each storage system. In

this model, they define a set of storage characteristics that a Cloud service may

provide. For instance, they enable us to describe the cost, the performance

and the region of a given service. The goal of this XML schema is twofold:

(i) expressing the storage needs of consumers using high-level concepts, and

(ii) enabling the matching between consumer requirements and the offerings

data storage systems. In order to satisfy the XML schema, the authors propose

a mathematical model which tackles the data allocation problem in the context

of Cloud Computing. This mathematical model is helpful since it guides the

best storage service selection. Indeed, it tries to meet application requirements

and the capabilities of Cloud services. In addition, it computes the optimal

cost of network allocation. To do so, the authors define an objective function

that consists of the linear combination between the cost, the latency and the

bandwidth. Although this solution is interesting, the authors consider only

single data store applications in their work.

Data contracts for Cloud-based data marketplaces [TRU 11, TRU 12,
VU 12]: Truong et al. propose a model and specify data concerns in data

contracts to support risk-aware data selection and utilization. For this purpose,

they define an abstract model to specify a data contract and the main data

contract terms. Moreover, they propose some algorithms and techniques

in order to enforce the data contract usage. They present a data contract

compatibility evaluation algorithm and define how to construct, compose

and exchange a data contract. In [TRU 11], they introduce their model for

exchanging data agreements in the Data-as-a-Service (DaaS) based on a new

type of service, which is called Data Agreement Exchange as a Service

(DAES). This model is called Description Model for DaaS (DEMODS)

[VU 12]. It is noteworthy that Truong et al. propose this data contract to

discover data and not the data stores. This will not help developers to choose

the appropriate data stores for their applications.

Cloud service selection based on variability modeling [WIT 12]:

Wittern et al. propose using Cloud features modeling based on variability

modeling in order to present user requirements and Cloud services capabilities.

A feature model is a directed graph in which vertices denote the Cloud

features and edges define the relationships between the features. These features

represent either the application requirements or the data services capabilities.

Based on that, they also define a Cloud service selection process as a

methodology for decision-making. Although this approach is automatic and
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dynamic, it does not support the discovery and the selection of multiple

services at the same time.

Automatic resources discovery for multiple data store-based applications
[SEL 15]: Sellami et al. propose a manifest-based approach to automatically

discover and select multiple data stores in Cloud environments. Indeed, the

developer should express his/her requirements in terms of data stores in

an abstract application manifest. Each Cloud environment exposes in an

offer manifest one or multiple offers that would support the application

requirements. A matching algorithm takes both manifests as input and selects

the most appropriate offer to the application.

4.3.4. Comparison

In this section, we present a comparison of the works presented above. To

do so, we fix a set of seven criteria to and compare these works. Criterion

1 corresponds to sub-requirement R11 (definition of the application needs

and requirements towards data). Criterion 2 corresponds to sub-requirement

R12 (exposure of data store capabilities) and criterion 3 corresponds to

sub-requirement R13 (definition of matching and negotiation techniques

between the application needs and data store capabilities). We also analyze

if these works are declarative (criterion 4) and automatic (criterion 5) in order

to ease the description of the requirements and the capabilities in terms of

data stores. The capability to address multi-data store environments is given

by criterion 6. Finally, criterion 7 corresponds to the Cloud Computing level

of the solution. This analysis is showcased in Table 4.1. In this table, the + is

used to say that the proposed work completely fulfills a given criterion and the

o is used for partial fulfillment. The − is used to say that the related work does

not propose a solution for a given criterion. It is worth noting that we use this

notation throughout this chapter to compare the studied works.

Against this analysis, we conclude that the majority of the studied works

mainly support the requirements R11 and R12. However, a minority takes

into account the requirement R13. In addition, these works do not propose

describing application requirements and data store capabilities in a descriptive

model even if this modeling ensures more automaticity in data store discovery.

Finally, except the work of Sellami et al. [SEL 15], the other works do not

support multiple data store discovery.
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CAMP [CAR 12] + + − − − − PaaS

CDMI [SNI 12] + − − − − − IaaS

Zhang et al. [ZHA 12] + + − − − − IaaS

Ruiz-Alvarez et al. [RUI 11, RUI 12] + + + + + − PaaS

Truong et al. [TRU 12, TRU 11, VU 12] + − o + + − IaaS

Wittern et al. [WIT 12] + + + − + − IaaS

Sellami et al. [SEL 15] + + + + + + PaaS

Table 4.1. Comparison of the related works enabling automatic data
store selection and discovery

4.4. Unique access for all data stores

4.4.1. Introduction

In some cases, applications want to explicitly store and manipulate their

data in multiple data stores. Applications already know the set of data stores

to use and how to distribute their data on these sources. However, in order

to simplify the development process, application developers do not want

to manipulate different proprietary APIs, especially when interacting with

multiple data stores (e.g. relational, NoSQL, etc.). Two classes of solutions can

be used in this case. The first is based on the definition of a neutral API capable

of supporting access to the different data stores. The second class is based on

the model-driven architecture and engineering methodology [POO 01].

In this section, we focus exclusively on the first class of solutions to ease

access to multiple data stores (especially NoSQL and relational data stores).

Stonebraker [STO 11] exposes the problems and the limits that a user may

encounter while using NoSQL data stores in particular. These problems derive

from the lack of standardization and the absence of a unique query language
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and API, not only between NoSQL data stores but also between relational

and NoSQL data stores. To rule out these problems, there are nowadays

substantial research works which propose solutions to provide transparent

access to heterogeneous data stores [SEL 14, HAS 10, ONG 14, POL 12,

ATZ 12, CAB 13]. All of these works are based on the definition of a neutral

API in the same spirit as JDBC [FIS 03] for relational data stores. We start this

section by presenting [SEL 14] in detail as a representative example of these

works and then we will describe the other works.

4.4.2. ODBAPI: a unified REST API for relational and NoSQL
data stores

Based on their unified data model (see section 4.5.3), Sellami et al.
[SEL 14] propose a generic resource model defining the different concepts

used in each category of data stores (i.e. NoSQL and relational). These

resources are managed by ODBAPI. This API is designed to provide an

abstraction layer and seamless interaction with data stores deployed in Cloud

environments. Developers can express and execute CRUD (Create, Retrieve,

Update and Delete) and complex queries in a uniform way regardless of the

type of the data store, whether it is relational or NoSQL. The authors propose

to support three types of queries within ODBAPI: (1) simple CRUD queries on

a single data store, (2) complex queries on a single data store and (3) complex

queries on multiple data stores. An overview of ODBAPI is given in Figure 4.2.

The figure is divided into four parts, which we introduce below:

– Data stores: first of all, we have the deployed data stores that a developer

may interact with during his/her application coding. In the figure, we showcase

that a developer may use a relational data store, a document data store (that is,

CouchDB) and a key/value data store (that is, Riak).

– Proprietary APIs and drivers: second, we find the proprietary API and

driver of each data store implemented by ODBAPI. For instance, in our API

implementation we use the JDBC API and MySQL driver to interact with a

relational DBMS.

– ODBAPI interface: the third part of Figure 4.2 represents the ODBAPI

interface and the different implementations of each data store. In fact, it

represents the shared part between all the integrated data stores and it provides

a unique view of the application side. It contains specific implementations of
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each data store. The current version of the ODBAPI implementation includes

four data stores: (1) relational DBMS, (2) CouchDB, (3) MongoDB and (4)

Riak. The addition of a new data store requires the implementation of a new

specific driver for ODBAPI.

– ODBAPI operations: these operations can be structured in three

categories: metadata operations which return information on the data store,

CRUD operations which manipulate entities and query operations which

support complex queries. Arguments and results of operations are structured

using JSON, which allows the exchange of data between heterogeneous data

stores.

Figure 4.2. An overview of ODBAPI

4.4.3. Other works

A REST-based API for Database-as-a-Service systems [HAS 10]:

Haselmann et al. present a universal REST-based API concept. This API
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allows us to interact with different Database-as-a-Services (DaaSs) whether

they are based on relational or NoSQL data stores. They propose a new

terminology of different concepts in either type of data store. They introduce

the terms entity, container and attribute to represent, respectively, (i) an

information object similar to a tuple in a relational data store, (ii) set of

information objects equivalent to a table and (iii) the content of an information

object. These terms represent the resources targeted by their API. This API

enables either CRUD operations or complex queries execution. However,

the authors just describe the API and do not give any details about its

implementation. In addition, their resource model is not generic to each

category of data store.

OData, an Open Data Protocol [ONG 14]: OData is a REST-based web

protocol which allows data querying and updating by building and consuming

RESTful APIs. Operations may be either CRUD operations or some complex

queries expressed using the OData-defined query language. OData enables

us to publish and edit resources via web clients within a corporate network

and across the Internet using simple HTTP messages. Resources are identified

using URIs and defined based on an abstract data model. Data are represented

using a JSON-based format or an XML-based format. Even if this approach

seems quite promising, it is more a specification than an implementation

especially for the management of complex queries. The query language is also

not well defined.

Spring Data Framework [POL 12]: the Spring Data Framework provides

some generic abstractions to handle different types of NoSQL and relational

data stores. These abstractions are refined for each data store. In addition,

they are based on a consistent programming model using a set of patterns

and abstractions defined by the Spring Framework. Nevertheless, adding a

new data store is not so easy and the solution is strongly linked to the Java

programming model.

SOS, a uniform access to non-relational data stores [ATZ 12]: Atzeni et al.
propose a common programming interface to seamlessly access NoSQL and

relational data stores referred to as Save Our Systems (SOS). SOS is a database

access layer between an application and the different data stores. To do so, the

authors define a common interface to access different NoSQL data stores and a

common data model to map application requests to the target data store. They

argue that SOS can be extended to integrate relational data stores; meanwhile,

there is no proof of the efficiency and extensibility of their system.
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ONDM, Object NoSQL Datastore Mapper [CAB 13]: ONDM is a

framework aiming to facilitate persistent object storage and retrieval in NoSQL

data stores. In fact, it offers to NoSQL-based application developers an Object

Relational Mapping-like (ORM-like) API (e.g. JPA API). However, ONDM

does not take into account relational data stores.

4.4.4. Comparison

We propose a comparison of the studied works based on criteria directly

derived from our main objective, which is supporting multiple data store-based

application developers in Cloud environments (see Table 4.2). This can be

provided by ensuring a unique access for relational and NoSQL data stores. For

this purpose, we fix a set of six requirements. Indeed, we check if the proposed

solutions provide unique API based on the REST architecture. The API should

be RESTful since we are integrating data in Cloud environments. Then, we

verify whether these works take into account relational and NoSQL data stores

or not. Afterwards, we make sure that these works allow the portability of the

source code of the application. Portability introduces the possibility of using

different programming languages. Finally, we check the extendability of the

proposed APIs. By extendability, we mean the possibility of adding a new data

store to the API.
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ODBAPI [SEL 14] + + + + + +

Haselmann et al. [HAS 10] + + + + − −
OData [ONG 14] + + + + + −
Spring Data Framework [POL 12] + + + + − −
SOS [ATZ 12] + − + − − −
ONDM [CAB 13] + − + − − −

Table 4.2. Comparison of the related works which
ensure unique access to multiple data stores
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Based on the comparison given above, we can conclude that there are

many works proposing a neutral API for heterogeneous data stores. These

works differ in that they do not support the same type of data stores and for

the moment there is no generic solution supporting all families of NoSQL

data stores (especially graph data stores). Complex queries are not always

supported. These works propose operations limited to one single data store

at a time. This requires some kind of “global” layer.

4.5. Unified data model and query languages

4.5.1. Introduction

The cornerstone of multiple data store integration solutions is some kind

of unified data model. The latter is used to define what is commonly referred

to as the “global” schema. This schema provides developers with transparent

access to the different data stores. The definition of such a global schema has

been widely addressed in the context of the relational data model, of the object-

oriented data model [CAR 95] and of the semi-structured data models [PAP 95,

MCH 97] (including XML-based data models). In all cases, the global schema

is the result of an integration process which produces one single schema from

several ones. This is a very complex process, especially when the data models

are heterogeneous and when the number of data stores to integrate is high.

To support the heterogeneity of the data models, a generic model is chosen

that has enough expressivity to describe all of the varieties of the input data

models. Historically, this generic model has been the relational one, then semi-

structured and sometimes semantic models (inspired by ontology formalism

such as RDF or description logic).

It is very difficult to integrate a large number of data stores (several

hundreds to thousands). In this context, peer-to-peer data integration systems

(e.g Piazza [HAL 04]) propose an approach where the global schema is

replaced by a set of partially global schemas. In Piazza, all data stores (or

nodes) are relational ones. A Piazza node stores local relations plus semantic

mappings to some remote Piazza nodes. A semantic mapping from node A

to node B is a transformation that is able to rewrite a query expressed on

A’s schema to an equivalent query expressed on B’s schema. Each node may

have different semantic mappings on different nodes and consequently does

not have the same view of the other nodes: that is the reason why there is
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no global (and shared) schema. Queries are evaluated by a distributed query

rewriting engine using recursively local relations and semantic mappings.

The global query language can be either an integrated query language based

on a unified data model, or some kind of federated query language which

allows us to compose results returned by sub-queries expressed in the native

query language of the target data store.

In this section, we present some substantial work proposing different

unified data models to manage heterogeneous data integration. We start by

introducing classical data integration approaches [CAR 95, PAP 95, MCH 97].

It is noteworthy that we do not take into account these solutions in our analysis

since they were not designed for NoSQL data stores and Cloud environments.

Then, we introduce the new generation of data integration approaches that

support NoSQL data stores and the Cloud Computing era [KIM 92, KIM 94,

KOS 10, ONG 14, SUN 13, MIC 15, SEL 16b, SEL 17, DOU 06, DOU 10],

focusing on first [SEL 17].

4.5.2. Data models of classical data integration approaches

The GARLIC data model [CAR 95] is an extension of the ODMG-93 object

model. The main building blocks of this model are objects and values. Each

object is uniquely identified and has a type expressed in the data model through

an object interface. The latter is composed of a set of attributes, relationships

and methods. The values can be either base values (e.g. integers, strings, object

references, etc.) or structured values (i.e. interfaces without identity). The

extension of the ODMG-93 data model [BAN 94] enables us to support the

management of integrity constraints and object references.

The Lightweight Object Repository (LORE) is a database management

system for semi-structured data. Its query language is referred to as LOREL,

which has a syntax closer to a select-from-where syntax and its data model is

called the Object Exchange Model (OEM) [PAP 95, MCH 97]. The latter is

a simple nested object model that is represented using a labeled and directed

graph. It is also a self-describing model since it is based on labeling in order to

describe objects’ meaning. This avoids defining a fixed schema in advance and

enables us to ensure more flexibility during data modeling. In other words, we

can say that each object represents its own schema. Each object in the OEM

model is structured by four fields: a label, a type, a value and an object ID.
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These works based on semi-structured models are clearly a good starting point

to support the integration of NoSQL data stores, since they have a data model

with similar characteristics.

4.5.3. A global schema to unify the view over relational and
NoSQL data stores

Sellami et al. [SEL 16a, SEL 16b, SEL 17] propose to use a global data

schema to easily integrate relational and NoSQL data stores. Nevertheless, this

global schema is minimum and represents a collection of entity sets that are

accessible by an application. This choice is deliberate in order to keep the

characteristics of NoSQL data stores. It is composed of two key elements:

the unified data model and the refinement rules. First, the unified data model

offers a unified view of potentially heterogeneous collections and enables us

to execute simple queries (i.e. CRUD operations). We illustrate this model in

Figure 4.3, based on five concepts. For ease of understanding of the data model,

we present some examples in Figure 4.4, which describe three EntitySets: dblp
is of type document, Conference ranking is of type key/value, and Person is of

type relational.

– The Attribute concept: this represents an attribute in a data store. In

Figure 4.4, the elements personName, Rank and year are concepts of type

Attribute.

– The Entity concept: an Entity is a set of one or multiple Attributes.

In Figure 4.4, we show Entities in the EntitySet called Conference ranking,

identified by the Attribute Conference.

– The EntitySet concept: an EntitySet is a set of one or multiple concepts

of type Entity. In Figure 4.4, dblp, Conference ranking and Person represent

EntitySets of type document collection, Key/Value database and relational

table, respectively.

– The Database concept: a Database contains one or multiple concepts

of type EntitySet. In Figure 4.1, we showcase the scientific social network

interacting with four Databases: a document data store, a relational data store,

a key/value data store and a graph data store. For example, the document and

relational Databases may contain, respectively, the EntitySets dblp and Person
illustrated in Figure 4.4.

– The Environment concept: the root concept in our model is Environment.
This concept represents a pool of concept of type Database and an application

can choose some of them to interact with. As a concrete example, we can give
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the example of the Cloud environment in which the scientific social network

interacts with the four data stores depicted in Figure 4.1.

Figure 4.3. Unified data model

Figure 4.4. Examples of EntitySet concepts of type document,
key/value and relational
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Second, the refinement rules enrich the unified data model using inter-entity

set relationships. This helps application programmers to correctly express their

multi-data store queries. For instance, we can define correspondence rules to

express a possible join between relational and NoSQL data stores or to remove

semantic ambiguities between attributes. Although this unified data model is

very interesting, it does not take into account graph data stores that are a very

specific NoSQL type.

Based on this unified data model, Sellami et al. propose their query

language based on a query algebra defined on EntitySets/Entities. This

query algebra is simple and is composed of the classical unary operations

(e.g. selection and projection) and binary operations (e.g. Cartesian product,

join, union, etc.). For manipulating complex attributes like those defined

in their unified model, more complex algebra can be used, notably N1NF

(Non first Normal Form) algebra [ABI 86]. Indeed, the authors define two

kinds of operations coming from the N1NF algebra. These operations, called

nest and unnest, are implemented in ODBAPI (see section 4.4.2).

In Listing 4.1, we give the example of a join query between person and

dblp EntitySets using ODBAPI.

> POST /odbapi/query

> Database−Type: database/VirtualDataStore

> Accept: application/json

> {

> "select": ["personName", "personCountry", title],

> "from": ["person", "dblp"],

> "where": ["personId <3", "personName in author"]

> }

< HTTP/1.1 200 OK

< Content−Type: application/json

< {

< "data":

< [

< {

< "personName": "Leslie Valiant",

< "personCountry":"United Kingdom",

< "title": "Robust logics"

< },

< {

< "personName": "John Hopcroft",

< "personCountry":"United States"

< "title": "Manipulation−Resistant

< Reputations Using Hitting Time"

< }

< ]

< }

Listing 4.1. Example of ODBAPI query and answer
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In the body of his/her query, the user expresses the query. He/she specifies

in the element select the attributes personName, personCountry and title that

he/she wants to project as a result to the query. Then, he/she expresses in the

element from the name of the person and dblp EntitySets to join. Finally, he/she

defines in the element where the predicate of the selection, that is, personId
< 3 and the logical expression of join personName in author. The response

of this request is the status code 200 OK and the answer is written in JSON

format in Listing 4.1. The approach of Sellami et al. [SEL 17] to evaluating

and optimizing this kind of query will be described in section 4.6.3.

4.5.4. Other works

The generalized data model of Cloudy [KOS 10]: Cloudy is a modular

Cloud storage system based on a generic data model. It can be customized to

meet application requirements. Cloudy offers to an application several external

interfaces (key/value, SQL, XQuery, etc.) while supporting different storage

engines (such as BerkeleyDB or in-memory hash-map). Each Cloudy node

in the system is an autonomous running process which executes the entire

Cloudy stack. Its generic data model is defined as a set of fields that allows

us to identify, transfer and query data. It contains (1) a key to uniquely identify

data, (2) information about the data structure, (3) the data itself and (4) some

metadata. Data are handled using three kinds of operation: read, write and

delete. Even though Cloudy’s data model is generic, it does not support other

types of NoSQL data stores and it does not enable execution of complex

queries. In addition, this data model does not take into account the modeling

of data stores, where data are stored, and the environment in which they

are deployed. This is very important in order to evaluate and optimize query

execution across integrated data.

SQL++ data model [ONG 14]: SQL++ is a semi-structured query language

which enables interaction with relational and JSON native data stores. Its data

model is a super set of JSON format and SQL data model (especially relational

tables). SQL++ extends JSON with bags and maps, while it extends SQL with

arrays, maps and arbitrary composition of complex values and heterogeneity.

Indeed, a SQL++ array/bag may contain heterogeneous elements comprising

a mix of tuples, scalars and nested bags/arrays/maps. The SQL++ query
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language is backward compatible with SQL in order to make it easy to

understand and to encourage developers to use it. It enables us to define two

variants of queries. On the one hand, a Select-From-Where (SFW) query takes

a bag as input and produces another bag as output. On the other hand, an

expression query produces arbitrary values as output, and consequently, it is

fully composable with SFW queries. Queries in SQL++ are evaluated using

an environment which includes a set of configurations and bindings. Although

SQL++ is very interesting, it does not support all kinds of NoSQL data stores

(namely key/value, column and graph data stores).

Heterogeneous data resource collaborative management model [SUN 13]:

Tao Sun et al. propose a heterogeneous data resource collaborative

management model in Cloud environment. It enables the update and balancing

of workloads, security management and some monitoring methods. This model

includes four main components: (1) the physical storage layer that stores

the heterogeneous data in relational, NoSQL and all file-based data stores;

(2) the data resource network layer that allows the management and the use of

Cloud storage services by abstracting all of the physical nodes (i.e. data stores)

into logical nodes and interconnecting these nodes – it is noteworthy that each

logical node may store various types of data; (3) the data conversion layer that

unifies the data resource formats by transforming them into GroupDB database

center’s format; (4) the GroupDB data management layer that enables data

management (e.g. data integration, data fusion, etc.). Nevertheless, authors

remain superficial in their proposed model and abstract their data in a high-

level manner. Indeed, they ignore the representation of data collections (e.g.

tables, document collections, etc.) and data (tuples, documents, attributes,

etc.). These omissions prevent users from expressing complex declarative

queries.

xR2RML: a non-relational database to RDF mapping language [MIC 15]:

xR2RML is a language enabling the description of mappings of various types

of data stores to RDF. It takes into account relational, XML, object-oriented

and some NoSQL data stores. It is an extension of R2RML that belongs

to the W3C Recommendation and it is a language for expressing mappings

from relational data stores to RDF datasets. Once the RDF dataset is created,

users can seamlessly query it using a declarative query language. Nevertheless,

using this approach, users cannot express complex queries, especially when it
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comes to interacting with NoSQL data stores. In addition, converting result

sets (especially SQL result sets) into RDF is likely to be quite inefficient.

Data integration of NoSQL stores using mappings [CUR 11, CUR 13]:

Curé et al. [CUR 11] propose a data integration system to enable querying

NoSQL and relational data stores. Their approach considers the following

assumptions: (1) the global schema is a standard relational data model since

the majority of end-users are familiar with this model and its query language,

and (2) the sources can be of type relational or NoSQL. To support the

execution queries over NoSQL data stores, they define a mapping language

to map attributes of the data stores to the global schema and a Bridge

Query Language (BQL) to rewrite queries. BQL is an intermediate query

language filling the gap between SQL and the NoSQL constructions. It is

based on filters and iterations. BQL queries are transformed into native NoSQL

programs. In a second step, Curé et al. [CUR 13] extend their solution using an

Ontology-Based Data Access (OBDA) approach. They replace the relational

data model with an ontology-based model and BQL with SPARQL2. This

allows us to use the reasoning capabilities of ontology. Although their proposal

is promising, there are some functionalities lacking (i.e. no query optimization

at the global level, no complex query execution, etc.). The approach is

interesting but is limited to key/value and document data stores. Administrators

also need to define the mappings.

Data models in Ontology-Based Data Access (OBDA) approaches [GIE 15,
BAG 14]: The key ingredient of OBDA approaches is the use of ontologies

to represent data and the data stores. In the same approach, it is possible to

define one or multiple ontologies to integrate data coming from heterogeneous

sources. The ontologies in this kind of solution play the role of data models

and, in general, they are classified and constructed in a Global-as-View (GAV)

manner. To query the data in a ODBA approach, users need to express their

queries using the SPARQL query language. As an example of solutions, we

can cite Curé et al. [CUR 13] as well as Ontop [GIE 15, BAG 14], which

is an OBDA-based framework to integrate relational data stores. It exposes

relational data stores as virtual RDF graphs by linking the terms in the ontology

to the data stores through mappings acquired using the mapping language

R2RML. Then the resulting RDF graph is queried using SPARQL. The Ontop

2 http://www.w3.org/TR/rdf-sparql-query/.
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framework is composed of four inputs: (1) an ontology to uniquely represent

data stores, (2) a set of mappings to link data stores to the ontology, (3) the

integrated data stores and (4) the queries written in SPARQL.

The common data model of CloudMdsQL [KOL 16]: CloudMdsQL is an

example of an approach without a global schema. Programmers manipulate

each data store using the native query language of their data store and a

global query language is used to define multi-data store queries. This global

language is based on a functional approach allowing programmers to combine

the results of (sub-)queries on a single data store, even if these sub-queries

are expressed in different languages (native query language of the data stores

or Python expressions). The results are represented in a neutral format based

on the relational model, allowing the exchange of data between heterogeneous

data stores.

The relational data model has been chosen for its simplicity and its

expressiveness. Indeed, they define three kinds of table expressions: (1) the

native table expressions (expressed via a data store’s native query mechanism),

(2) the SQL table expressions and (3) the embedded blocks of Python

statements which produce relations. Data structured in these tables may be

formatted using two kinds of data type: scalar and composite. In addition,

data are managed using classical relational operators (i.e. the projection, the

restriction, the join, etc.) and two other operators. The first one is defined to

support data and metadata transformation and the second one is defined to

optimally execute nested queries. Below, we introduce a query expressing a

join between two data stores:

T1(x int, y int)@DB1 = {select x, y from A}

T2(x int, z string)@DB2 = {* db.B.find( {$lt: {x, 10}, {x:1, z:1, _id:0}} *}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x AND T1.y <= 3

Listing 4.2. Example of CloudMdsQL query

This query uses two table expressions, T1 and T2. T1 is a SQL table

expression located on DB1, which is a relational data store, whereas T2 is

a native table expression located on DB2, which is a MongoDB data store.

The query computes the join of T1 and T2 and another selection on T1.

We can notice that, even if T2 is defined by a native MongoDB query, its

signature is described in the (relational) common data model of CloudMdsQL.
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The main advantage of CloudMdsQL is that the underlying data stores can

be queried using their own query language with all its expressiveness. It has

the disadvantage of introducing a new query language for programmers (they

have to master both the different native query languages and the functional

language).

4.5.5. Comparison

In this section, we present an overview of the studied solutions for unifying

data models, and discuss the features of these works based on the comparison

shown in Table 4.3. In this comparison, we consider the following set of

criteria. Firstly, we take into account whether the data model has a dynamic

aspect or not. We characterize a data model by dynamicity if it represents

the data, the data stores where they are stored and the environment where

these data stores are deployed. In addition, we highlight whether the studied

solutions enable us to unify relational and NoSQL data models. Then, we

present the use of a global schema and of a global query language. Finally,

we address whether the solutions specifically address cloud environments. In

Table 4.3, we show whether each solution satisfies our criteria or not.
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Sellami et al. [SEL 16a] + + + Unified data model + SQL +
correspondence rules

Cloudy data model [KOS 10] + − − Generic data model External unique interface +

SQL++ data model [ONG 14] + − − JSON++ SQL++ −
Tao Sun et al. [SUN 13] + + + Heterogeneous data resource Uniform query language +

management model

xR2RML [MIC 15] + + − RDF Declarative −
Ontop [GIE 15, BAG 14] + + + RDF SPARQL −
Curé [CUR 11, CUR 13] + + + Relational/RDF SQL −
CloudMdsQL [KOL 16] + + + Relational Functional +

Table 4.3. Comparison of the related works unifying data models

From this table, we can observe that most of the works do define a global

and integrated schema. This schema is defined using the relational data model,

RDF structures or some specific models. A global query language is also
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integrated, to query the global schema (SQL like or SPARQL). A few works

do not impose a global schema: they replace it by the definition of the set of

accessible collections of data. In one work [SEL 16a], a set of correspondence

rules can be added. CloudMdsQL proposes a functional federated query

language allowing the composition of results of sub-queries expressed using

native query languages. This means we can preserve the expressiveness of data

stores and express multi-data store queries. This comes at the price of the use

of a new language. Finally, the majority of works support at least one type of

NoSQL data store (i.e. key/value, document, column or graph).

4.6. Query processing and optimization

4.6.1. Introduction

In this section, we analyze how global (or multi-data stores) queries

are processed. They are done partly by the data stores and partly by

an external component (global query engine). This query engine can be

centralized or distributed and needs statistics from the different data stores

to perform efficient optimizations. Of course, the query processing only

somewhat depends on the underlying global query language. We distinguish

two categories: integrated query languages (based on an integrated global

schema) and federated query languages (without a global schema). The first

part of this section describes federated query language works [KOL 16,

DUG 15] and the second part describes integrated query language works

[SEL 17, BAJ 11, LIA 16, VIL 13, ZHU 11, DEW 13, LEF 14].

4.6.2. Federated query language approaches

CloudMdsQL, Querying heterogeneous Cloud data stores with a functional
query language: Valduriez et al. [KOL 16] propose CloudMdsQL, which is an

example of a federated system. It is based on a functional language approach

allowing users to combine the results of (sub-)queries on a single data store,

even if these sub-queries are expressed in different languages (the native query

language of the data stores or Python expressions). The main advantage of this

system is that the underlying data stores can be queried using their own query

language with all its expressiveness. Even if sub-queries use different query

languages, their combination needs a common data model and an associated

query language (for more details, see section 4.5.4).
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The CloudMdsQL query engine is fully distributed on a set of nodes storing

the different data stores in a peer-to-peer style. Each query engine node is

composed of two parts, a master part and a worker part. Each master or worker

is able to exchange data or query sub-plans between them. A master is able to

analyze and optimize CloudMdsQL queries and to control sub-plans execution

by workers. A worker locally optimizes a sub-plan, executes it and sends the

results either to another worker or to the master.

A query is sent to a specific master using some load balancing strategies.

This master is in charge of producing an optimized query execution plan

serialized as a JSON-based object allowing the exchange between worker

nodes. The query is first decomposed in sub-trees, each of them being

associated with (and executed by) a certain data store. These sub-trees are

connected by a common query plan that will be handled by the query engine.

This initial decomposition may be modified by the optimization step, which

will possibly push some operations from the common query plan to the sub-

trees or pull some operations from the sub-trees to the common query plan (if a

data store does not support these operations). The optimization is done using a

simple cost model and information stored in a catalog (replicated at all master

nodes). The optimizer needs accurate statistics that are not easy to obtain for

heterogeneous and autonomous data stores. Statistics can be gathered either

running periodically probing queries or using cost functions. In CloudMdsQL,

these cost functions can be defined by database administrators or even by

users. A simple exhaustive search strategy is used to explore all possible plan

permutations. The objectives of this optimization are (1) to minimize local

execution time in the data stores (pushing down select operators, selecting the

optimal join algorithm between hash, merge, nested loop or bind join) and (2)

to minimize communication cost by reducing data transfers between workers.

This query execution plan (QEP) is transmitted to a worker in charge to control

its execution. This execution can be done by a single worker but, in most cases,

by several workers encapsulating different data stores. Each worker can be

considered as a simple runtime database processor on top of a data store and is

composed of three modules:

– The query execution controller: it controls the execution of a query plan

interacting with the local operator engine or with other workers if part of the

query needs to be handled by other nodes.

– The operator engine: it executes the operators on data retrieved from the

local data store (through the wrapper), from another worker or from the table

storage. It may store intermediate results in the table storage.
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– The wrapper: it translates calls from generic to specific in the local data

store API. It writes results in table storage or delivers it to the operator.

We consider our example of a simple CloudMdsQL query (see Listing 4.2)

using two tables T1 and T2 and suppose that T1 is stored on node db1 and

T2 is stored on node db2. At a first step, this query is decomposed as a non-

optimized query plan (see Figure 4.5(a)), where T1 is computed on db1, T2

as a native query on MongoDB is computed on db2 and the rest of the query

(equijoin on x, selection on y and projection on x and y) is done outside. After

optimization (see Figure 4.5(b)), the selection on y is pushed down on node

db1, and the equijoin is replaced by a merge join. This merge join is computed

on node db1 together with the final projection. db1 has been chosen because it

is able to compute joins, which thus reduces the communicating cost (there is

no need to transfer nor transform T1 data).

(a) Initial query plan for a CloudMdsQL

query

(b) Optimal query plan for a CloudMdsQL

query

Figure 4.5. Examples of query plans for a CloudMdsQL query [KOL 16]

BigDAWG, a new view of federated databases [DUG 15]: The authors

introduce a new class of multi-store systems called polystores. A polystore

system pursues three goals: (1) supporting location transparency for the

storage of objects, (2) semantic completeness that does not lose any

capabilities natively provided by an underlying data store and (3) enabling
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users to access objects stored in a single data store using different interfaces.

In order to support these goals, [DUG 15] proposes the notion of an island. An

island of information is a collection of data stores accessed with a single query

language. More precisely, an island defines a data model, a query language

and a set of data stores, each of them able to translate a query expressed

in the island’s query language into its native one. It is possible to express a

query on multiple islands, if the target objects are stored in different islands

(that is, in data stores present in different islands). In this case, users have

to express explicitly how the data should be cast from one island data model

to another. [ELM 15] demonstrates an implementation of this vision with two

cross-system islands Myria and D4M. Myria is based on relational algebra

extended with iteration and it is used on top of SciDB (a DBMS for scientific

data) and Postgres. D4M is based on associative arrays, which allows us to

model matrices, graphs and spreadsheets. It is used on top of SciDB, Accumulo

(a key-value store) and Postgres. Polystore systems are clearly a nice and

ambitious vision. Current implementations are only partial ones and it lacks

more declarative query languages for cross system islands.

4.6.3. Integrated query language approaches

Virtual data stores to integrate relational and NoSQL data stores: Sellami

et al. [SEL 17] propose a mediator/wrapper approach based on an integrated

schema. A common data model and an associated query algebra have been

defined to express and process declarative multi data stores queries. These

queries are sent to a mediator, which decomposes them into sub-queries

that are sent to the different data stores using ODBAPI (see section 4.4.2).

Wrappers encapsulate the different data stores, taking as input ODBAPI

queries and transforming them into native queries, which are then locally

optimized and processed. The wrappers send the results back to another node

(either the mediator or another wrapper in order to reduce data movement

and transformations). Optimization is done by the mediator in two steps. In

the first step, selections and projections are pushed down to the local data

stores to reduce the size of the data to exchange. In the second step, an

optimal distributed plan is constructed by a dynamic programming method

trying to minimize not only I/O and CPU costs, but also data shipping and

transformation. For that, the composition of the intermediate results returned

by data stores can be done not only by the mediator but also by other nodes if
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they have the capability. Its main advantage is simplicity, since programmers

can use just one simple query language without manipulating explicit

transformations or different native query languages. However, expressivity

is limited to those of the ODBAPI query algebra, and specific constructs of

NoSQL graph data stores (e.g. path queries) are not supported.

Hadapt, an efficient processing of data warehousing queries in a split
execution environment [BAJ 11]: Many works have focused on the integration

of Hadoop-based stores with relational ones. In Hadapt, a relational DBMS is

associated with each node in a Hadoop cluster. Map/reduce is the basis of the

evaluation of queries, but optimization is done by having the corresponding

data partitions in each store co-located on the same node. In fact, map/reduce

jobs cannot exploit data placement because they manipulate blocks of data

without any knowledge about their content. Hadapt constructs and exploits

partitioning information to optimize queries. The problem of this approach

is that partitioning is predefined and must be consistent on both Hadoop and

relational stores.

Querying relational and NoSQL databases in SQL [LIA 16, VIL 13,
ZHU 11]: A data adapter [LIA 16] is designed to efficiently transform NoSQL

data into relations and to support SQL querying. Three modes are proposed:

blocking transformation, blocking dump and direct access. These modes

differ on the synchronization guarantees supported between the NoSQL data

and the relational ones that may produce inconsistencies due to the write

operations on NoSQL data processed during the transformation process. The

main problem with this approach is the high cost of data transformation.

[VIL 13] extends a relational DBMS by implementing new scan operators

able to efficiently process basic key/value operations of NoSQL data stores.

BigIntegrator [ZHU 11] is a mediation-based system enabling the integration

of relational and Cloud-based (i.e. Bigtable) data stores. In this system, authors

propose using SQL as a query language in order to join data stored in

Bigtable and relational data stores, and they define a RDBMS wrapper and

a Bigtable wrapper for each kind of integrated data store. In addition, they

propose the BigIntegrator query processor layer that plays the role of the

mediator. This layer enables query re-writing into trees and Datalog queries,

query optimization and algebra operation-based execution plan generation.

The key ingredients of this layer are (1) the absorber manager that takes the

Datalog query and, for each source predicate referenced in the query, calls the

corresponding absorber of its wrapper, and (2) the finalizer manager that takes
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the algebra expression and, for each access filter operator referenced in the

algebra expression, calls the corresponding finalizer of its wrapper. Despite its

importance, the BigIntegrator system has some limitations. Indeed, it suffers

from a lack of genericity since it supports just one particular NoSQL data store

(i.e. Bigtable). Besides, if a user wants to integrate a new data store, he/she has

to define a well-tailored wrapper to this data store, an absorber manager and a

finalizer manager.

All these works [LIA 16, VIL 13, ZHU 11] are limited to a single data store

and do not support distributed query processing on a set of heterogeneous data

stores.

Polybase, split query processing over Hadoop clusters using SQL standards
[DEW 13]: The authors propose an extension of SQL server Parallel Data

Warehouse (PDW) that can query data stored either in PDW or in Hadoop

file systems (HDFS). Polybase exposes HDFS data using an external table

mechanism. A key component of the architecture is the HDFS bridge, which is

deployed on each node of the PDW cluster and can read/write data from HDFS

to SQL server supporting parallelism and repartitioning. Polybase uses a cost-

based optimization algorithm allowing to choose the best way to evaluate a

hybrid query plan (i.e. a query plan involving data both from PDW and HDFS).

Considering various parameters estimated with statistics extracted from HDFS

files, Polybase can either push HDFS data into PDW and then evaluate the

SQL query or execute part of the SQL query as map/reduce jobs (in this case,

we avoid the cost of moving and transforming data). Compared to Hadapt,

Polybase supports a larger class of optimization but supposes the knowledge

of accurate statistics on external HDFS files.

MISO, MultIStore Online tuning [LEF 14]: MISO addresses the physical

design of multi-store systems composed of Hadoop-based systems and data

warehouse-based systems (i.e. parallel DBMS). In order to reduce data

movement during query processing, it decides what data to materialize in

which store using online tuning. The basic idea is to materialize intermediate

results produced by Hadoop jobs or multi-store query processing and to

strategically store them to optimize subsequent queries. Materialization comes

at a low cost because it uses data already constructed from previous queries.

The only costs to consider are the transfer cost and the storage cost. MISO

formalizes this physical tuning as an optimization problem (it minimizes a

cost function depending on a query workload and a set of materialized results)
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solved by a variant of a dynamic programming-based knapsack solution.

Experiments not only show the effectiveness of the approach but also illustrate

some trade-off issues (frequency of reorganization and cost). It is also not

really adapted to ad-hoc queries (the query workload is supposed to be known).

4.6.4. Comparison

Table 4.4 analyzes and compares these different approaches using a set of

well-defined criteria. The first criterion corresponds to the type of supported

architecture (mediation, federation or simple adaptation). The second and

third ones correspond to, respectively, the type of the supported data stores

(relational, Hadoop or NoSQL) and the number of data stores (just one source

per type or multiple sources per type). The query language criterion describes

the type of query language (global or federated) and the style of the language

(SQL-like, functional, etc.). The last criteria describe the optimization part:

the placement corresponds to optimization due to the placement of data and

movement corresponds to optimization trying to minimize data movement.
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CloudMdsQL [KOL 16] Federation Relational + • Federated − +
NoSQL • Functional

BigDAWG [DUG 15] Federation Relational + • Federated + +
NoSQL • D4M

(possibly all types) • Myria

Sellami et al. [SEL 17] Mediation Relational + • Global − +
NoSQL • SQL-like

Hadapt [BAJ 11] − Relational − • − static −
Hadoop • SQL

Data-adapter [LIA 16] Adaptation Relational − • − − −
NoSQL • SQL

Polybase [DEW 13] Adaptation Relational − • − + −
Hadoop • SQL

MISO [LEF 14] − Relational − • − − Table

Hadoop • SQL materialization

Table 4.4. Comparison of approaches ensuring query
processing and optimization
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From this table, we can observe that works which fully support multi-

data stores use mediation or federation as the architecture. Mediation-based

systems offer a unified (relational) view of the different data stores and SQL

as a global query language, while federated systems have no unified view and

support a dedicated federated query language. The other systems use a simple

adaptation architecture, that is, they transform a non-relational data source into

a relational format that can query both relational and non-relational sources

with SQL. Hadapt tries to couple relational DBMS and Hadoop, increasing

the efficiency of Hadoop by exploiting information coming from the relational

data source. Optimization is done by most of the systems but is very specific

to each approach.

4.7. Summary and open issues

In this section, we propose to conduct a global summary of the most

relevant studied solutions. We will exclusively focus on works supporting

at least two requirements of Big Data integration requirements in cloud

environments, that is, R1 – selection, discovery and deployment of data stores,

R2 – uniform access to any data store, R3 – integrated view on data stores and

R4 – global query processing and optimization. To do so, we present a global

summary in section 4.7.1 and introduce a set of open issues in section 4.7.2.

4.7.1. Summary

In this section, we provide a global summary and comparison between

all the works studied throughout this chapter (see Table 4.5). To do so, we

define three groups of criteria. The first one represents the requirements that

we identified in section 4.2 for Big Data integration in cloud environments

(R1, R2, R3 and R4). The second one enables us to check if the studied works

sufficiently support Big Data and Cloud Computing features. The third one

illustrates the main dimensions of the proposed solutions: which type of data

integration architecture (federation, mediation or adaptation), how it supports

the heterogeneity of data structures, how it supports the heterogeneity of query

languages and, finally, which criteria are used for query optimization. It is

noteworthy that we have not discussed works that only focus on a single

requirement.
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Curé et al. [CUR 13] − + + + − − Mediation Relational • Global −
NoSQL • SPARQL

Ontop [GIE 15, BAG 14] − + + + − − Mediation Relational • Global −
NoSQL • SPARQL

Polybase [DEW 13] − + + + − + Adaptation Relational • Global Cost

Hadoop • SQL based

BigDAWG [DUG 15] − + + + − + Mediation Relational • Federated Cost

NoSQL • D4M, Myria based

Sellami et al. [SEL 16a] + + + + + + Mediation Relational • Global Cost

NoSQL • SQL-like based

CloudMdsQL [KOL 16] − + − + + + Federation Relational • Federated Cost

NoSQL • Functional based

Table 4.5. Global summary

Based on Table 4.5, we can see that there is no work that fulfills all

the criteria. Indeed, the requirement R1 is only partly supported by Sellami

et al. [SEL 16a]. If Big Data is considered in many works, there are just

a few works that explicitly consider the Cloud Computing context (i.e.

CloudMdsQL and Sellami et al.). Considering data heterogeneity, some works

use the relational model as a pivot model: CloudMdsQL uses the relational

model to store intermediate results, and Polybase uses the relational model

to structure data stored in Hadoop. Sellami et al. use a model inspired from

semi-structured models. Finally, some works like Curé et al. and Ontop use

ontologies to structure and remove ambiguities over heterogeneous data. The

proposed solutions differ in the way they offer a uniform view on top of

heterogeneous data stores and the way they define some kinds of global query

languages. Many works use an integrated schema, unifying the different data

stores, but, considering the diversity of the data stores, it is quite difficult

– even impossible – to be generic. In most cases, the proposed approaches

do not consider all types of data stores (e.g. graph data stores are in general

not supported). CloudMdsQL adopts another approach, keeping the different

data stores in their native model without integration. Sellami et al. use
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an intermediate solution describing the different data stores with the same

model but without integration (though there are correspondence rules to allow

inter-data store relationships). The global query language depends mainly

on the choice made for data integration. Systems supporting an integrating

schema propose an associated query language (e.g. SQL-like, or SPARQL

for ontology-based approach). CloudMdsQL proposes a functional language

composing sub-queries expressed using the native language of the different

data stores. BigDAWG goes a step further in supporting different global

models and associated query languages (for the moment, an array-based view

with D4M and an extended relational view with Myria). Optimization is done

by many systems, but it is quite difficult without accurate statistics, which

are difficult to acquire with heterogeneous and autonomous systems. Some

works try to address Big Data issues in minimizing data movement between the

different nodes. The concept of polystore systems introduced by BigDAWG is

very innovative, but difficult to implement. Optimization is difficult to handle

and is very specific to each view. Moreover, no completely declarative query

language has been defined so far: in Myria or D4M data stores need to be

explicitly cast during query execution.

4.7.2. Open issues

Big Data and Cloud Computing have clearly complicated the classical

approaches of data integration: the large number of data and the high level

of heterogeneity of data stores introduce a higher level of complexity. There

are thus two opposing goals. The first one is to have highly integrated data

stores, which can be accessed using a declarative query language, whereas

the second one is to preserve the specificity of the different data stores and

the use of their native query languages. Many works focus on the first goal

but do not preserve the expressivity of the native query languages. Moreover,

the high number of data stores also impacts the integration process which is

very difficult to achieve. Few works like CloudMdsQL focus on the second

goal, but they introduce a new global query language combining sub-queries

expressed with native query languages and this mixture is not so declarative

nor easy to use for programmers. The definition of such a global declarative

query language is clearly an open issue.

Optimization is the ‘holy grail’ of database management and, in the context

of Big Data integration, it is clearly a major challenge. First, it is difficult
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to get accurate statistics from autonomous data stores. Second, new criteria

have to be considered, such as minimization of data movement and data

transformations. Finally, each data store may be implemented on a cluster and

not a single server, which improves the complexity of the optimization (e.g the

partitioning of data is much more complex with data possibly distributed on

different nodes).

Updates are in general not considered in data integration systems even if

they are quite important. It is the same thing for Big Data integration. The

different data stores may use different transaction and consistency models.

Relational data stores respect the ACID properties in order to try to exhibit

strong consistency and availability of their data. However, for NoSQL data

stores, the problem is even more complex because of the lack of a common

and clear concept of transaction. In fact, some NoSQL data stores just support

transactions limited to one record and, in general, they suppose that updates of

a transaction are limited to one server node to avoid using synchronization

protocols such as a two-phase commit. NoSQL data stores are generally

based on a simple model of consistency (compared to ACID properties)

called BASE (Basically Available, Soft-State and Eventually Consistent).

These properties come from the CAP theorem stating that a distributed

system cannot ensure consistency, availability and partition tolerance at the

same time [BRE 00, BRE 12, ABA 12]. The problem of eventually consistent

models is that programmers need to explicitly program the behavior of the

application if part of the work of the transaction has a failure. [BER 13]

addresses this problem of client-centric consistency on top of eventually

consistent distributed data stores (e.g. Amazon S3). It involves a middleware

service running on the same server as the application and providing the same

behavior as a causally consistent data source even in the presence of failures

or concurrent updates. This service uses vector clocks and client-side caching

to ensure client-centric properties. The main interest of this proposal is that it

comes at a low cost and it is transparent for programmers. Defining consistency

models for distributed NoSQL systems is also an open issue.

As part of Big Data integration, it would certainly be worthwhile to take

into account the management and the supervision of data quality. Classical

data quality models and tools are intended to work with relational data stores.

In fact, they are based on (1) static data, (2) a very small number of rules

and (3) specific metrics to evaluate and measure data quality. However, when

it comes to dealing with data quality in a Big Data integration environment,
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new challenges and hurdles appear [SAH 14]. Indeed, we face voluminous and

high-velocity data. Hence, the number of rules should increase and new metrics

should be (re)defined. It is quite impossible for administrators to extract rules

manually, but rules can be learned from the data itself. If rules are violated

by the data, there are two main approaches to deal with inconsistencies:

inconsistent data are removed [KHA 15] or queries are answered in an

approximate manner without repairing the database [RAZ 11].

4.8. Conclusion

In this chapter, we defined four Big Data integration requirements in cloud

environments: R1 (selection, discovery and deployment of data stores), R2

(uniform access to any data stores), R3 (integrated view on data stores) and

R4 (global query processing and optimization). Even if data integration has

been widely studied in the past, Big Data and Cloud Computing introduce new

problems that question classical approaches. The use of an integrated global

schema and an associated query language, for instance, is deeply questionable

and some works are based on a minimum global schema. We have analyzed the

literature regarding each requirement and presented a summary of this analysis.

Our summary includes a comparison between studied works on the basis of the

criteria that we addressed in our research objectives. We concluded this article

by introducing a global summary concering the most relevant studied solutions

and defining some open issues covering different requirements and other open

problems such as updates and data quality.
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5

Querying RDF Data:
a Multigraph-based Approach

5.1. Introduction

Resource description framework (RDF) is a standard for the conceptual

description of knowledge. The RDF data are cherished and exploited by

various domains such as life sciences, Semantic Web and social networks.

Furthermore, its integration at Web scale compels RDF management engines

to deal with complex queries in terms of both size and structure. Popular

examples are provided by Google, which exploits the so-called knowledge
graph to enhance its search results with semantic information gathered from

a wide variety of sources, or by Facebook, which implements the so-called

entity graph to fuel its search engine and provide further information

extracted, for instance, by Wikipedia. Another example is provided by recent

question–answering systems [CAB 12, ZOU 14a] that automatically translate

natural language questions in SPARQL queries and successively retrieve

answers by considering the available information in the different linked open

data sources. In all these examples, complex queries (in terms of size and

structure) are generated to ensure the retrieval of all the required information.

Since the use of large knowledge bases that are commonly stored as RDF

triplets is becoming a common way to ameliorate a wide range of applications,
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efficient querying of RDF data sources using SPARQL1 (query language

conceived to query RDF data) is becoming crucial for modern information

retrieval systems.

With the ever-increasing advantage of representing real-world data of

various domains in RDF format, the following two vital challenges have

been faced by the RDF data management community: (1) the automatically

generated queries cannot be bounded in their structural complexity and size

(e.g. the DBPEDIA SPARQL Benchmark [MOR 11] contains some queries

having more than 50 triplets [ALU 14a]); (2) the queries generated by retrieval

systems (or by any other applications) need to be efficiently answered in a

reasonable amount of time. Modern RDF data management systems, such

as x-RDF-3X [NEU 10] and Virtuoso [ERL 12], are designed to address the

scalability of SPARQL queries, but they still have problems answering large

and structurally complex SPARQL queries [ALU 14b].

In order to address these challenges, in this chapter, we discuss a

graph-based RDF querying engine, AMBER [ING 16] (Attributed Multigraph

Based Engine for RDF querying), which involves two steps: an offline

step, where RDF data are transformed into multigraph and are indexed,

and an online step, where an efficient approach to answer a SPARQL

query is proposed. First, RDF data are represented as a multigraph, where

subjects/objects constitute vertices and multiple edges (predicates) can appear

between the same pair of vertices. Then, new indexing structures are conceived

to efficiently access RDF multigraph information. Finally, by representing the

SPARQL queries multigraphs too, the query answering task can be reduced

to the problem of subgraph homomorphism. To deal with this problem,

AMBER uses an efficient approach that exploits the structural properties of

the multigraph query as well as the indices previously built on the multigraph

structure. Experimental evaluation over popular RDF benchmarks show the

quality in terms of time performances and robustness of our proposal. In

this chapter, we focus only on the SELECT/WHERE clause of the SPARQL

language2, which constitutes the most important operation of any RDF query

engine.

1 http://www.w3.org/TR/sparql11-overview/.

2 http://www.w3.org/TR/sparql11-overview/.
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5.2. Related work

In order to efficiently answer SPARQL queries, many stores and APIs

inspired by the relational model were proposed [ERL 12, BRO 02, NEU 10,

CAR 04]. x-RDF-3X [NEU 10], inspired by modern RDBMS, representing

RDF triples as a large three-attribute table. The RDF query processing is

boosted using an exhaustive indexing schema coupled with statistics over

the data. Also, Virtuoso [ERL 12] strongly exploits the RDBMS mechanism

in order to answer SPARQL queries. Virtuoso is a column-store based

system that uses sorted multi-column column-wise compressed projections.

Furthermore, these systems build table indexing using standard B-trees.

Jena [CAR 04] supplies API for manipulating RDF graphs. Jena exploits

multiple-property tables that permit multiple views of graphs and vertices,

which can be used simultaneously.

The database community has recently started to investigate RDF stores

based on graph data management techniques [DAS 14, ZOU 14b, KIM 15].

The work in [DAS 14] addresses the problem of supporting property graphs as

RDF, since the majority of graph databases are based on the property graph

model. The authors introduce a property graph to the RDF transformation

scheme and propose three models to address the challenge of representing

the key/value properties of property graph edges in RDF. gStore [ZOU 14b]

applies graph pattern-matching techniques using the filter-and-refinement

strategy to answer SPARQL queries. It employs an indexing schema, named

VS∗-tree, to concisely represent the RDF graph. Once the index is built,

it is used to find promising subgraphs that match the query. Finally, exact

subgraphs are enumerated in the refinement step. Turbo_Hom++ [KIM 15] is

an adaptation of a state-of-the-art subgraph isomorphism algorithm (TurboISO
[HAN 13]) to the problem of SPARQL queries. Exploiting the standard graph

isomorphism problem, the authors relax the injectivity constraint to handle the

graph homomorphism, which is the RDF pattern-matching semantics. Unlike

the proposed AMBER, Turbo_Hom++ does not index the RDF graph, while

gStore concisely represents RDF data through a VS∗-tree.

5.3. Background and preliminaries

In this section, we provide basic definitions on the interplay between RDF

and its multigraph representation. Later, we explain how the task of answering

SPARQL queries can be reduced to a multigraph homomorphism problem.
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5.3.1. RDF data

According to the W3C standards3, RDF data are represented as a set of

triples <S,P,O>, as shown in Figure 5.1(a), where each triple <s, p, o>
consists of the following three components: a subject, a predicate and an

object. Further, each component of the RDF triple can be either of the two

forms: an IRI (Internationalized Resource Identifier) or a literal. For brevity,

an IRI is usually written with a prefix (e.g. <http://dbpedia.org/resource/

isPartOf> is written as “x:isPartOf”), whereas a literal is always written with

double quotes (e.g. “90000”). While a subject s and a predicate p are always

an IRI, an object o can be either an IRI or a literal.

RDF data can also be represented as a directed graph where, given a triple

<s, p, o>, the subject s and the object o can be treated as vertices and the

predicate p forms a directed edge from s to o, as depicted in Figure 5.1(b).

Furthermore, to underline the difference between an IRI and a literal, we use

standard rectangles and arcs for the former, while we use beveled corners and

edges (no arrows) for the latter.

5.3.1.1. Data multigraph representation

Motivated by the graph representation of RDF data (Figure 5.1(b)), we

take it a step further by transforming it into a data multigraph G, as shown

in Figure 5.1(c).

Let us consider an RDF triple <s, p, o> from the RDF tripleset <S,P,O>.

To transform the RDF tripleset into data multigraph G, we set the following

four protocols: we always treat the subject s as a vertex; a predicate p is

always treated as an edge; we treat the object o as a vertex only if it is an

IRI (e.g. vertex v2 corresponds to object “x:London”) and when the object

is a literal, we combine the object o and the corresponding predicate p to

form a tuple <p, o> and assign it as a vertex attribute to the subject s (e.g.

<“y:hasCapacityOf”, “90000”> is assigned to vertex v4). Every vertex is

assigned a null value {-} in the vertex attribute set. However, to realize this

in the realm of graph management techniques, we maintain three different

dictionaries, whose elements are a pair of “key” and “value”, and a mapping

function that links them. The three dictionaries depicted in Table 5.1 are a

3 http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
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vertex dictionary (Table 5.1(a)), an edge-type dictionary (Table 5.1(b)) and a

vertex attribute dictionary (Table 5.1(c)). In all the three dictionaries, an RDF

entity represented by a “key” is mapped to a corresponding “value”, which can

be a vertex/edge/attribute identifier. Thus, by using the mapping functions Mv,

Me and Ma for vertex, edge-type and vertex attribute mapping, respectively,

we obtain a directed, vertex attributed data multigraph G (Figure 5.1(c)), which

is formally defined as follows.

(a) RDF tripleset (b) Graph representation of RDF data

(c) Equivalent multigraph G

Figure 5.1. a) RDF data in n-triple format; b) graph
representation and c) attributed multigraph G

DEFINITION 5.1 (Directed, Vertex Attributed Multigraph).– A directed, vertex
attributed multigraph G is defined as a 4-tuple (V,E, LV , LE), where V is a
set of vertices, E ⊆ V ×V is a set of directed edges with (v, v′) �= (v′, v), LV

is a labeling function that assigns a subset of vertex attributes A to the set of
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vertices V and LE is a labeling function that assigns a subset of edge types T
to the edge set E.

To summarize, an RDF tripleset is transformed into a data multigraph

G, whose elements are obtained by using the mapping functions as already

discussed. Thus, the set of vertices V = {v0, . . . , vm} is the set of mapped

subject/object IRI, and the labeling function LV assigns a set of vertex

attributes A = {-, a0, . . . , an} (mapped tuple of predicate and object literal)

to the vertex set V . The set of directed edges E is a set of pair of vertices

(v, v′) that are linked by a predicate, and the labeling function LE assigns

the set of edge types T = {t0, . . . , tp} (mapped predicates) to the set of

directed edges E. The edge set E maintains the topological structure of the

RDF data. Furthermore, the mapping of object literals and the corresponding

predicates as a set of vertex attributes results in a compact representation of

the multigraph. As depicted in Figure 5.1(a), all the object literals and the

corresponding predicates are reduced to a set of vertex attributes. For example,

the pair <y:hasCapacityOf, “90000”> is mapped to the vertex attribute a0;

similarly, <y:wasFoundedIn, “1994”> and <y:hasName, “MCA_Band”> are

mapped to attributes a1 and a2, respectively.

5.3.2. SPARQL query

A SPARQL query usually contains a set of triple patterns, similarly to RDF

triples, except that any of the subject, predicate and object may be a variable,

whose bindings are to be found in the RDF data4. In the current work, we

address the SPARQL queries with a “SELECT/WHERE” option, where the

predicate is always instantiated as an IRI (Figure 5.2(a)). The SELECT clause

identifies the variables to appear in the query results, while the WHERE clause

provides triple patterns to match against the RDF data.

5.3.2.1. Query multigraph representation
In any valid SPARQL query (as in Figure 5.2(a)), every triplet has at least

one unknown variable ?X , whose bindings are to be found in the RDF data.

It should now be easy to observe that a SPARQL query can be represented in

the form of a graph as in Figure 5.2(b), which in turn is transformed into query

multigraph Q (as in Figure 5.2(c)).

4 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.
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(a) SPARQL Query G (b) Graph representation of SPARQL

(c) Equivalent Multigraph Q

Figure 5.2. a) SPARQL query representation;
b) graph representation and c) attributed multigraph Q

In the query multigraph representation, each unknown variable ?Xi is

mapped to a vertex ui that forms the vertex set U component of the query

multigraph Q (e.g. ?X6 is mapped to u6). Since a predicate is always

instantiated as an IRI, we use the edge-type dictionary in Table 5.1(b), to map

the predicate to an edge-type identifier ti ∈ T (e.g. “isMarriedTo” is mapped to

t8). When an object oi is a literal, we use the attribute dictionary (Table 5.1(c)),

to find the attribute identifier ai for the predicate-object tuple <pi, oi> (e.g.

{a0} forms the attribute for vertex u4). Further, when a subject or an object is

an IRI, which is a not a variable, we use the vertex dictionary (Table 5.1(a)),

to map it to an IRI-vertex uirii (e.g. “x:United_States” is mapped to uiri0 ) and

maintain a set of IRI vertices R. Since this vertex is not a variable and a real

vertex of the query, we portray it differently by a shaded square-shaped vertex.

When a query vertex ui does not have any vertex attributes associated with it

(e.g. u0, u1, u2, u3, u6), a null attribute {-} is assigned to it. On the contrary,

an IRI-vertex uirii ∈ R does not have any attribute. Thus, a SPARQL query is

transformed into a query multigraph Q.
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s/o Mv(s/o)

x:Music_Band v0
x:Amy_Winehouse v1

x:London v2
x:England v3

x:WembleyStadium v4
x:United States v5

x:Blake Fielder-Civil v6
x:Christopher_Nolan v7

x:Dark_Knight_Trilogy v8

(a) Vertex Dictionary

p Me(p)

y:isPartOf t0
y:hasCapital t1
y:hasStadium t2

y:livedIn t3
y:diedIn t4

y:wasBornIn t5
y:wasFormedIn t6

y:wasPartOf t7
y:wasMarriedTo t8

(b) Edge-type Dictionary

<p, o> Ma(<p, o>)

<y:hasCapacityOf, “90000"> a0

<y:wasFoundedIn, “1994"> a1

<y:hasName, “MCA_Band"> a2

(c) Attribute Dictionary

Table 5.1. Dictionary look-up tables for vertices,
edge-types and vertex attributes

In this work, we always use the notation V for the set of vertices of G, and

U for the set of vertices of Q. Consequently, a data vertex v ∈ V and a query

vertex u ∈ U . Also, an incoming edge to a vertex is positive (default) and an

outgoing edge from a vertex is labeled negative (“-”).

5.3.3. SPARQL querying by adopting multigraph homomorphism

As we recall, the problem of SPARQL querying is addressed by finding

the solutions to the unknown variables ?X that can be bound with the RDF

data entities so that the relations (predicates) provided in the SPARQL query

are respected. In this work, to harness the transformed data multigraph G and

the query multigraph Q, we reduce the problem of SPARQL querying to a

sub-multigraph homomorphism problem. The RDF data are transformed

into data multigraph G, and the SPARQL query is transformed into query

multigraph Q. Let us now recall that finding SPARQL answers in the RDF

data is equivalent to finding all the sub-multigraphs of Q in G that are

homomorphic. Thus, let us now formally introduce homomorphism for a

vertex attributed, directed multigraph.



Querying RDF Data: a Multigraph-based Approach 143

DEFINITION 5.2.– Sub-multigraph homomorphism. Given a query multigraph
Q = (U,EQ, LU , L

Q
E) and a data multigraph G = (V,E, LV , LE), the

sub-multigraph homomorphism from Q to G is a surjective function
ψ: U → V such that:

1) ∀u ∈ U,LU (u) ⊆ LV (ψ(u)) and

2) ∀(um, un) ∈ EQ, ∃ (ψ(um), ψ(un)) ∈ E, where (um, un) is a directed
edge, and LQ

E(um, un) ⊆ LE(ψ(um), ψ(un)).

Thus, by finding all the sub-multigraphs in G that are homomorphic to

Q, we enumerate all possible homomorphic embeddings of Q in G. These

embeddings contain the solution for each of the query vertex that is an

unknown variable. Thus, by using the inverse mapping function M−1
v (vi)

(referring to the vertex dictionary in Table 5.1(a)), we find the bindings for

the SPARQL query. The decision problem of subgraph homomorphism is

NP-complete. This standard subgraph homomorphism problem can be seen as

a particular case of sub-multigraph homomorphism, where both the labeling

functions LE and LQ
E always return the same subset of edge types for all the

edges in both Q and G. Thus, the problem of sub-multigraph homomorphism

is at least as hard as subgraph homomorphism. Further, the subgraph

homomorphism problem is a generic scenario of subgraph isomorphism

problem, where the injectivity constraints are slackened [KIM 15].

5.4. AMBER: a SPARQL querying engine

The proposed AMBER (Attributed Multigraph Based Engine for RDF

querying) contains two different stages: (1) an offline stage, during which

RDF data are transformed into multigraph G and then a set of index structures

I are constructed that capture the necessary information contained in G; (2) an

online stage, during which a SPARQL query is transformed into a multigraph

Q, and then by exploiting the subgraph matching techniques along with the

already built index structures I, the homomorphic matches of Q in G are

obtained.

Given a multigraph representation Q of a SPARQL query, AMBER

decomposes the query vertices U into a set of core vertices Uc and satellite

vertices Us. Intuitively, a vertex u ∈ U is a core vertex if the degree of

the vertex is more than one; on the contrary, a vertex u with degree one

is a satellite vertex. For example, in Figure 5.2(c), Uc = {u1, u3, u5} and
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Us = {u0, u2, u4, u6}. Once decomposed, we run the sub-multigraph

matching procedure on the query structure spanned only by the core vertices.

However, during the procedure, we also process the satellite vertices (if

available) that are connected to a core vertex that is being processed. For

example, while processing the core vertex u1, we also process the set of

satellite vertices {u0, u2, u4} connected to it; however, the core vertex u5 has

no satellite vertices to be processed. In this way, as the matching proceeds,

the entire structure of the query multigraph Q is processed to find the

homomorphic embeddings in G. The set of indexing structures I is extensively

used during the process of sub-multigraph matching. The homomorphic

embeddings are finally translated back to the RDF entities using the inverse

mapping function M−1
v , as discussed in section 5.3.

5.5. Index construction

Given a data multigraph G, we build the following three different indices:

(i) an inverted list A for storing the set of data vertex for each attribute in

ai ∈ A; (ii) a trie index structure S to store features of all the data vertices V
and (iii) a set of trie index structures N to store the neighborhood information

of each data vertex v ∈ V . For brevity of representation, we ensemble all

the three index structures into I:= {A,S,N}. During the query matching

procedure (the online step), we access these indexing structures to obtain the

candidate solutions for a query vertex u. Formally, for a query vertex u, the

candidate solutions are a set of data vertices Cu = {v|v ∈ V } obtained by

accessing A, S or N , denoted as CA
u , CS

u or CN
u , respectively.

5.5.1. Attribute index

The set of vertex attributes is given by A = {a0, . . . , an} (section 5.3),

where a data vertex v ∈ V might have a subset of A assigned to it. We now

build the vertex attribute index A by creating an inverted list, where a particular

attribute ai has the list of all the data vertices in which it appears.

Given a query vertex u with a set of vertex attributes u.A ⊆ A, for each

attribute ai ∈ u.A, we access the index structure A to fetch a set of data

vertices that have ai. Then, we find a common set of data vertices that have

the entire attribute set u.A. For example, considering the query vertex u5
(Figure 5.2(c)), it has an attribute set {a1, a2}. The candidate solutions for
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u5 are obtained by finding all the common data vertices, in A, between a1 and

a2, resulting in CA
u5

= {v0}.

5.5.2. Vertex signature index

The index S captures the edge-type information from the data vertices.

For a lucid understanding of this indexing schema, we formally introduce

the notion of vertex signature that is defined for a vertex v ∈ V , which

encapsulates the edge information associated with it.

DEFINITION 5.3.– Vertex signature. For a vertex v ∈ V , the vertex signature
σv is a multiset containing all the directed multi-edges that are incident on v,
where a multi-edge between v and a neighboring vertex v′ is represented by
a set that corresponds to the edge types. Formally, σv =

⋃
v′∈N(v) LE(v, v

′),
where N(v) is the set of neighborhood vertices of v and ∪ is the union operator
for the multiset.

Data vertex Signature Synopses

v σv f+
1 f+

2 f+
3 f+

4 f−
1 f−

2 f−
3 f−

4

v0 {{−t6}, {t7}} 1 1 -7 7 1 1 -6 6

v1 {{−t3}, {−t7}, {−t8}, {−t4,−t5}} 0 0 0 0 2 5 -3 8

v2 {{−t0}, {t1}, {−t2}, {t5}, {t6}, {t4, t5}} 2 4 -1 6 1 2 0 2

v3 {{t0}, {t3}, {−t1}} 1 2 0 3 1 1 -1 1

v4 {{t2}} 1 1 -2 2 0 0 0 0

v5 {{t3}, {t3}} 1 1 -3 3 0 0 0 0

v6 {{t8}, {−t3}} 1 1 -8 8 1 1 -3 3

v7 {{−t0}, {−t3}, {−t5}} 0 0 0 0 1 3 0 5

v8 {{t0}} 1 1 0 0 0 0 0 0

Table 5.2. Vertex signatures and the corresponding synopses for the
vertices in the data multigraph G (Figure 5.1(c))

The index S is constructed by tailoring the information supplied by the

vertex signature of each vertex in G. To extract some interesting features, let

us observe the vertex signature σv2 as supplied in Table 5.2. To begin with, we

can represent the vertex signature σv2 separately for the incoming and outgoing

multi-edges as σ+
v2 = {{t1}, {t5}, {t6}, {t4, t5}} and σ−

v2 = {{−t0}{−t2}},

respectively. Now we observe that σ+
v2 has four distinct multi-edges and σ−

v2
has two distinct multi-edges. Now, let us assume that we want to find candidate

solutions for a query vertex u. The data vertex v2 can be a match for u only
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if the signature of u has at most four incoming (“+”) edges and at most two

outgoing (“-”) edges; else, v2 cannot be a match for u. Thus, more similar

features (e.g. maximum cardinality of a set in the vertex signature) can be

proposed to filter out irrelevant candidate vertices. Thus, for each vertex

v, we propose to extract a set of features by exploiting the corresponding

vertex signature. These features constitute a synopsis, which is a surrogate

representation that approximately captures the vertex signature information.

The synopsis of a vertex v contains a set of features F , whose values

are computed from the vertex signature σv. In this background, we propose

four distinct features: f1 – the maximum cardinality of a set in the vertex

signature; f2 – the number of unique dimensions in the vertex signature; f3 –

the minimum index value of the edge type and f4 – the maximum index value

of the edge type. For f3 and f4, the index values of edge type are nothing but

the position of the sequenced alphabet. These four basic features are replicated

separately for outgoing (negative) and incoming (positive) edges, as seen in

Table 5.2. Thus, for the vertex v2, we obtain f+
1 = 2, f+

2 = 4, f+
3 = −1

and f+
4 = 7 for the incoming edge set and f−

1 = 1, f−
2 = 2, f−

3 = 0 and

f−
4 = 2 for the outgoing edge set. Synopses for the entire vertex set V for the

data multigraph G are depicted in Table 5.2.

Once the synopses are computed for all data vertices, an R-tree is

constructed to store all the synopses. This R-tree constitutes the vertex

signature index S. A synopsis with |F | fields forms a leaf in the R-tree. When

a set of possible candidate solutions are to be obtained for a query vertex u, we

create a vertex signature σu in order to compute the synopsis and then obtain

the possible solutions from the R-tree structure.

The general idea of using an R-tree is as follows. A synopsis F of a data

vertex spans an axes-parallel rectangle in an |F |-dimensional space, where the

maximum coordinates of the rectangle are the values of the synopses fields

(f1, . . . , f|F |) and the minimum coordinates are the origin of the rectangle

(filled with zero values). For example, a data vertex represented by a synopsis

with two features F (v) = [2, 3] spans a rectangle in a two-dimensional space

in the interval range ([0, 2], [0, 3]). Now, if we consider synopses of two query

vertices, F (u1) = [1, 3] and F (u2) = [1, 4], we observe that the rectangle

spanned by F (u1) is wholly contained in the rectangle spanned by F (v) but

F (u2) is not wholly contained in F (v). Thus, u1 is a candidate match, whereas

u2 is not.
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LEMMA 5.1.– Querying the vertex signature index S constructed with
synopses guarantees to output at least the entire set of candidate solutions.

PROOF.– Consider the field f±
1 in the synopsis that represents the maximum

cardinality of the neighborhood signature. Let σu be the signature of the query
vertex u and {σv1 , . . . , σvn} be the set of signatures on the data vertices. By
using f1, we need to show that CS

u has at least all the valid candidate matches.
Since we are looking for a superset of query vertex signatures and we are
checking the condition f±

1 (u) ≤ f±
1 (vi), where vi ∈ V , a vertex vi is pruned

if it does not match the inequality criterion, because it can never be an eligible
candidate. This analogy can be extended to the entire synopsis, since it can be
applied disjunctively. �

Formally, the set of candidate solutions for a query vertex u can be written

as CS
u = {v|∀i∈[1,...,|F |]f±

i (u) ≤ f±
i (v)}, where the constraints are met for

all the |F |-dimensions. Since we apply the same inequality constraint to all

the fields, we negate the fields that refer to the minimal index value of the

edge type (f+
3 and f−

3 ) so that the rectangular containment problem still holds.

Further, to respect the rectangular containment, we populate the synopsis fields

with “0” values in case the signature does not have either a positive or negative

edge in it, as seen for v1, v3, v4, v5 and v7.

For example, if we want to compute the possible candidates for a query

vertex u0 in Figure 5.2(c), whose signature is σu0 = {−t5}, we compute the

synopsis [0 0 0 0 1 1 5 5]. Now we look for all those vertices that subsume

this synopsis in the R-tree, whose elements are depicted in Table 5.2, which

gives us the candidate solutions CS
u0

= {v1, v7}, thus pruning the rest of the

vertices.

The S index helps to prune the vertices that do not respect the

edge-type constraints. This is crucial since this pruning is performed for the

initial query vertex, and hence many candidates are cast away, thereby avoiding

unnecessary recursion during the matching procedure. For example, for the

initial query vertex u0, whose candidate solutions are {v1, v7}, the recursion

branch is run only on these two starting vertices instead of the entire vertex

set V .
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5.5.3. Vertex neighborhood index

The vertex neighborhood index N captures the topological structure of the

data multigraph G. The index N comprises 1-neighborhood trees built for each

data vertex v ∈ V . Since G is a directed multigraph, and each vertex v ∈ V
can have both incoming and outgoing edges, we construct two separate index

structures N+ and N− for incoming and outgoing edges, respectively, that

constitute the structure N .

To understand the index structure, let us consider the data vertex v2 from

Figure 5.1(c), shown separately in Figure 5.3(a). For this vertex v2, we collect

all the neighborhood information (vertices and multi-edges) and represent

this information via a tree structure, built separately for incoming (“+”) and

outgoing (“-”) edges. Thus, the tree representation of a vertex v contains

the neighborhood vertices and the corresponding multi-edges, as shown in

Figure 5.3(b), where the vertices of the tree structure are represented by the

edge types.

(a) Neighborhood structure of v2 (b) OTIL structure for v2

Figure 5.3. Building Neighborhood Index for data vertex v2

In order to construct an efficient tree structure, we take inspiration from

Terrovitis et al. [TER 06] to propose the structure – Ordered Trie with Inverted

List (OTIL). To construct the OTIL index as shown in Figure 5.3(b), we

insert each ordered multi-edge that is incident on v at the root of the trie.

We consider a data vertex vi, with a set of n neighborhood vertices N(vi).
Now, for every pair of incoming edge (vi, N

j(vi)), where j ∈ {1, . . . , n},

there exists a multi-edge {ti, . . . , tj}, which is inserted into the OTIL

structure N+. Similarly, for every pair of outgoing edge (N j(vi), vi), there

exists a multi-edge {tm, . . . , tn}, which is inserted into the OTIL structure
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N− maintaining two OTIL structures that constitute N . Each multi-edge

is ordered (w.r.t. increasing edge-type indexes), before inserting into the

respective OTIL structure, and the order is universally maintained for all data

vertices. Further, for every edge type ti, we maintain a list that contains all the

neighborhood vertices N+(vi)/N
−(vi) that have the edge type ti incident on

them.

To understand the utility of N , let us consider an illustrative example.

Considering the query multigraph Q in Figure 5.2(c), let us assume that we

want to find the matches for the query vertices u1 and u0 in order. Thus, for

the initial vertex u1, let us say, we have found the set of candidate solutions,

which is {v2}. Now, to find the candidate solutions for the next query vertex

u0, it is important to maintain the structure spanned by the query vertices, and

this is where the indexing structure N is accessed. Thus, to retain the structure

of the query multigraph (in this case, the structure between u1 and u0), we

have to find the data vertices that are in the neighborhood of already matched

vertex v2 (a match for vertex u1), which has the same structure (edge types)

between u1 and u0 in the query graph. Thus, to fetch all the data vertices that

have the edge type t5, which is directed toward v2 and hence “+”, we access the

neighborhood index trie N+ for vertex v2, as shown in Figure 5.3. This gives

us a set of candidate solutions CN
u0

= {v1, v7}. It is easy to observe that, by

maintaining two separate indexing structures N+ and N−, for both incoming

and outgoing edges, we can reduce the time to fetch the candidate solutions.

Thus, in a generic scenario, given an already matched data vertex v, the

edge direction “+” or “-” and the set of edge types T ′ ⊆ T , the index N will

find a set of neighborhood data vertices {v′|(v′, v) ∈ E ∧ T ′ ⊆ LE(v
′, v)} if

the edge direction is “+” (incoming), while N returns {v′|(v, v′) ∈ E ∧ T ′ ⊆
LE(v, v

′)} if the edge direction is “-” (outgoing).

5.6. Query matching procedure

In order to follow the working of the proposed query matching procedure,

we formalize the notion of core and satellite vertices. Given a query graph Q,

we decompose the set of query vertices U into a set of core vertices Uc and

a set of satellite vertices Us. Formally, when the degree of the query graph

Δ(Q) > 1, Uc = {u|u ∈ U ∧ deg(u) > 1}; however, when Δ(Q) = 1,

i.e. when the query graph is either a vertex or a multi-edge, we choose one

query vertex at random as a core vertex and hence |Uc| = 1. The remaining
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vertices are classified as satellite vertices, whose degree is always 1. Formally,

Us = {U\Uc}, where for every u ∈ Us, deg(u) = 1. The decomposition of the

query multigraph Q is depicted in Figure 5.4, where the satellite vertices are

separated (vertices under the shaded region in Figure 5.4(a)), in order to obtain

the query graph that is spanned only by the core vertices (Figure 5.4(b)). Thus,

during query decomposition, satellite vertices are separated from the query

graph, leaving a core graph and a set of satellite vertices; the original query

structure is preserved by storing the edge information that links each satellite

vertex and the corresponding core vertex in the query graph spanned by core

vertices.

(a) Query graph with satellite vertices

(shaded)

(b) Query graph spanned by

core vertices

Figure 5.4. Decomposing the query multigraph
into core and satellite vertices

The proposed AMBER-Algo (Algorithm 5.3) only performs recursive

sub-multigraph matching procedure on the query structure spanned by Uc, as

seen in Figure 5.4(b). Since the entire set of satellite vertices Us is connected to

the query structure spanned by the core vertices, AMBER-Algo processes the

satellite vertices while performing sub-multigraph matching on the set of core

vertices. Thus, during the recursion, if the current core vertex has satellite
vertices connected to it, the algorithm directly retrieves a list of possible

matching for such satellite vertices and it includes them in the current partial

solution. Each time the algorithm executes a recursion branch with a solution,

the solution not only contains a data vertex match vc for each query vertex

belonging to Uc but it also contains a set of matched data vertices Vs for each

query vertex belonging to Us. Each time a solution is found, we can generate
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not just one, but a set of embeddings through the Cartesian product of the

matched elements in the solution.

Since finding SPARQL solutions is equivalent to finding homomorphic

embeddings of the query multigraph, the homomorphic matching allows

different query vertices to be matched with the same data vertices. We recall

that there is no injectivity constraint in the sub-multigraph homomorphism

as opposed to the sub-multigraph isomorphism [KIM 15]. Thus, during the

recursive matching procedure, we do not have to check if the potential data

vertex has already been matched with previously matched query vertices. This

is an advantage when we are processing satellite vertices: we can find matches

for each satellite vertex independently without the necessity to check for a

repeated data vertex.

Before getting into the details of the AMBER-Algo, we first explain how

a set of candidate solutions is obtained when there is information that is only

associated with the vertices. Then, we explain how a set of candidate solutions

is obtained when we encounter the satellite vertices.

5.6.1. Vertex-level processing

To understand the generic query processing, it is necessary to understand

the matching process at vertex level. Whenever a query vertex u ∈ U is being

processed, we need to check whether u has a set of attributes A associated with

it or if any IRIs are connected to it (see section 5.3.2).

To process an arbitrary query vertex, we propose a PROCESSVERTEX

procedure, depicted in Algorithm 5.1. This algorithm is only invoked when a

vertex u has at least either a set of vertex attributes or any IRI associated with

it. The PROCESSVERTEX procedure returns a set of data vertices CandAttu,

which are matchable with u; if CandAttu is empty, then the query vertex

u has no matches in V . As seen in Lines 1–2, when a query vertex u has

a set of vertex attributes, i.e. u.A �= ∅, we obtain the candidate solutions

CA
u by invoking the QUERYATTINDEX procedure, which accesses the index

A as explained in section 5.5.1. For example, the query vertex u5 with

vertex attributes {a1, a2} can only be matched with the data vertex v0; thus,

CA
u5

= {v0}.
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Algorithm 5.1. PROCESSVERTEX(u,Q,A,N )

1: if u.A �= ∅ then
2: CA

u = QUERYATTINDEX(A, u.A)

3: if u.R �= ∅ then
4: CI

u =
⋂

uiri
i ∈u.R( QUERYNEIGHINDEX(N , LQ

E(u, u
iri
i ), uirii ) )

5: CandAttu = CA
u ∩ CI

u /* Find common candidates */

6: return CandAttu

When a query vertex u has IRIs associated with it, i.e. u.R �= ∅ (Lines

3–4), we find the candidate solutions CI
u by invoking the QUERYNEIGHINDEX

procedure. As seen in section 5.3.2, a vertex u is connected to an IRI vertex

uirii through a multi-edge LQ
E(u, u

iri
i ). An IRI vertex uirii always has only

one data vertex v that can match. Thus, the candidate solutions CI
u are

obtained by invoking the QUERYNEIGHINDEX procedure, which fetches all

the neighborhood vertices of v that respect the multi-edge LQ
E(u, u

iri
i ). The

procedure is invoked until all the IRI vertices u.R are processed (Line 4).

Considering the example in Figure 5.2(c), u3 is connected to an IRI-vertex

uiri0 , which has a unique data vertex match v5, through the multi-edge {−t3}.

Using the neighborhood index N , we look for the neighborhood vertices of

v5 that have the multi-edge {−t3}, which gives us the candidate solutions

CI
u3

= {v1}. Finally, in Line 5, the merge operator ∩ returns a set of common

candidates CandAttu only if u.A �= ∅ and u.R �= ∅. Otherwise, CA
u or CI

u are

returned as CandAttu.

5.6.2. Processing satellite vertices

In this section, we provide insights into processing a set of satellite vertices

Usat ⊆ Us that are connected to a core vertex uc ∈ Uc. This scenario results

in a structure that appears frequently in SPARQL queries called star structure

[GUB 14, HUA 11]. A typical star structure depicted in Figure 5.5 has a core

vertex uc = u1 and a set of satellite vertices Usat = {u0, u2, u4} connected to

the core vertex. For each candidate solution of the core vertex u1, we process

u0, u2, u4 independently of each other, since there is no structural connectivity
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(edges) among them, although they are only structurally connected to the core

vertex u1.

Figure 5.5. A star structure in the query multigraph Q

LEMMA 5.2.– For a given star structure in a query graph, each satellite vertex
can be independently processed if a candidate solution is provided for the core
vertex uc.

PROOF.– Consider a core vertex uc that is connected to a set of satellite
vertices Usat = {u0, . . . , us}, through a set of edge types T ′ = {t0, . . . , ts}.
Let us assume vc is a candidate solution for the core vertex uc, and we want
to find candidate solutions for ui ∈ Usat and uj ∈ Usat, where i �= j.
Now, the candidate solutions for ui and uj can be obtained by fetching the
neighborhoods of the already matched vertex vc that respect the edge types
ti ∈ T ′ and tj ∈ T ′, respectively. Since two satellite vertices ui and uj are
never connected to each other, the candidate solutions of ui are independent
of that of uj . This analogy applies to all the satellite vertices. �

Given a core vertex uc, we initially find a set of candidate solutions Canduc

using the index S. Then, for each candidate solution vc ∈ Canduc , the set of

solutions for all the satellite vertices Usat that are connected to uc are returned

by the MATCHSATVERTICES procedure described in Algorithm 5.2. The set

of solution tuple Msat defined in Line 1 stores the candidate solutions for the

entire set of satellite vertices Usat. Formally, Msat = {[us, Vs]}|Usat|
s=1 , where

us ∈ Usat and Vs is a set of candidate solutions for us. In order to obtain

candidate solutions for us, we query the neighborhood index N (Line 3); the

QUERYNEIGHINDEX function returns all the neighborhood vertices of already

matched vc by considering the multi-edge in the query multigraph LQ
E(uc, us).

As every query vertex us ∈ Usat is processed, the solution set Msat that
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contains candidate solutions grows until all the satellite vertices have been

processed (Lines 2–8).

Algorithm 5.2. MATCHSATVERTICES(A,N , Q, Usat, vc)

1: SET: Msat = ∅, where Msat = {[us, Vs]}|Usat|
s=1

2: for all us ∈ Usat do
3: Candus = QUERYNEIGHINDEX(N , LQ

E(uc, us), vc)

4: Candus = Candus ∩ PROCESSVERTEX(us, Q,A,N )

5: if Candus �= ∅ then
6: Msat = Msat ∪ (us, Candus) /* Satellite solutions */

7: else
8: return Msat := 0 /* No solutions possible */

9: return Msat /* Matches for satellite vertices */

In Line 4, the set of candidate solutions Candus are refined by invoking

Algorithm 5.1 (VERTEXPROCESSING). After the refinement, if there are finite

candidate solutions, we update the solution Msat; else, we terminate the

procedure as there can be no matches for a given matched vertex vc. The

MATCHSATVERTICES procedure performs two tasks: (1) it checks whether

the candidate vertex vc ∈ Candus is a valid matchable vertex; and (2) it

obtains the solutions for all the satellite vertices.

5.6.3. Arbitrary query processing

Algorithm 5.3 shows the generic procedure we develop to process arbitrary

queries. We recall that for an arbitrary query Q, we define two different types

of vertexes: a set of core vertices Uc and a set of satellite vertices Us. The

QUERYDECOMPOSE procedure in Line 1 of Algorithm 5.3. performs this

decomposition by splitting the query vertices U into Uc and Us, as observed

in Figure 5.4. To process arbitrary query multigraphs, we perform recursive

sub-multigraph matching procedure on the set of core vertices Uc ⊆ U ;

during the recursion, satellite vertexes connected to a specific core vertex are
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processed too. Since the recursion is performed on the set of core vertices, we

propose a few heuristics for ordering the query vertices.

Ordering of the query vertices forms one of the vital steps for subgraph

matching algorithms [KIM 15]. In any subgraph matching algorithm, the

embeddings of a query subgraph are obtained by exploring the solution space

spanned by the data graph. But since the solution space itself can grow

exponentially in size, we are compelled to use intelligent strategies to traverse

the solution space. In order to achieve this, we propose a heuristic procedure

VERTEXORDERING (Line 2, Algorithm 5.3) that uses two ranking functions.

The first ranking function r1 relies on the number of satellite vertices

connected to the core vertex, and the query vertices are ordered with the

decreasing rank value. Formally, r1(u) = |Usat|, where Usat = {us|us ∈
Us ∧ (u, us) ∈ E(Q)}. A vertex with more satellite vertices connected to it is

rich in structure and hence it would probably yield fewer candidate solutions

to be processed under recursion. Thus, in Figure 5.4, u1 is chosen as an

initial vertex. The second ranking function r2 relies on the number of incident

edges on a query vertex. Formally, r2(u) =
∑m

j=1 |σ(u)j |, where u has

m multi-edges and |σ(u)j | captures the number of edge types in the jth

multi-edge. Again, Uord
c contains the ordered vertices with the decreasing

rank value r2. Further, when there are no satellite vertices in the query Q, this

ranking function is of high priority. Despite the use of any ranking function,

the query vertices in Uord
c , when accessed in sequence, should be structurally

connected to the previous set of vertices. If two vertices have the same rank, the

rank with lower priority determines which vertex wins. Thus, for the example

in Figure 5.4, the set of ordered core vertices is Uord
c = {u1, u3, u5}.

The first vertex in the set Uord
c is chosen as the initial vertex uinit (Line 3),

and subsequent query vertices are chosen in sequence. The candidate solutions

for the initial query vertex CandInit are returned by QUERYSYNINDEX

procedure (Line 4), which are constrained by the structural properties

(neighborhood structure) of uinit. By querying the index S for initial query

vertex uinit, we obtain the candidate solutions CandInit ∈ V that match the

structure (multi-edge types) associated with uinit. Although some candidates

in CandInit may be invalid, all valid candidates are present in CandInit,
as deduced in Lemma 5.1. Furthermore, PROCESSVERTEX procedure is

invoked to obtain the candidate solutions according to vertex attributes and

IRI information, and only then are the common candidates retained.
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Algorithm 5.3. AMBER-Algo (I, Q)

1: QUERYDECOMPOSE: Split U into Uc and Us

2: Uord
c = VERTEXORDERING(Q,Uc)

3: uinit = u|u ∈ Uord
c

4: CandInit = QUERYSYNINDEX(uinit, S)

5: CandInit = CandInit ∩ PROCESSVERTEX(uinit, Q,A,N )

6: FETCH: U sat
init = {u|u ∈ Us ∧ (uinit, u) ∈ E(Q)}

7: SET: Emb = ∅
8: for vinit ∈ CandInit do
9: SET: M = ∅,Ms = ∅,Mc = ∅

10: if U sat
init �= ∅ then

11: Msat = MATCHSATVERTICES(A,N , Q, U sat
init, vinit)

12: if Msat �= ∅ then
13: for [us, Vs] ∈ Msat do
14: UPDATE: Ms = Ms ∪ [us, Vs]

15: UPDATE: Mc = Mc ∪ [uinit, vinit]

16: Emb = Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

17: else
18: UPDATE: Mc = Mc ∪ (uinit, vinit)

19: Emb = Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

20: return Emb /* Homomorphic embeddings of query multigraph */

Before getting into the algorithmic details, we explain how the solutions are

handled and how we process each query vertex. We define M as a set of tuples,

whose ith tuple is represented as Mi = [mc,Ms], where mc is a solution pair

for a core vertex and Ms is a set of solution pairs for the set of satellite vertices

that are connected to the core vertex. Formally, mc = (uc, vc), where uc is the

core vertex and vc is the corresponding matched vertex; Ms is a set of solution
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pairs, whose jth element is a solution pair (us, Vs), where us is a satellite

vertex and Vs is a set of matched vertices. In addition, we maintain a set Mc

whose elements are the solution pairs for all the core vertices. Thus, during

each recursion branch, the size of M increases until it reaches the query size

|U |; once |M | = |U |, homomorphic matches are obtained.

For all the candidate solutions of initial vertex CandInit, we perform

recursion to obtain homomorphic embeddings (Lines 8–19). Before getting

into recursion, for each initial match vinit ∈ CandInit, if it has satellite

vertices connected to it, we invoke the MATCHSATVERTICES procedure

(Lines 10–11). This step not only finds solution matches for satellite vertices

(if present), but also checks if vinit is a valid candidate vertex. If the returned

solution set Msat is empty, then vinit is not a valid candidate and hence we

continue with the next vinit ∈ CandInit; else, we update the set of solution

pairs Ms for satellite vertices and the solution pair Mc for the core vertex

(Lines 12–15) and invoke the HOMOMORPHICMATCH procedure (Lines 17).

On the contrary, if there are no satellite vertices connected to uinit, we

update the core vertex solution set Mc and invoke the HOMOMORPHICMATCH

procedure (Lines 18–19).

In the HOMOMORPHICMATCH procedure (Algorithm 5.4), we fetch the

next query vertex from the set of ordered core vertices Uord
c (Line 4). Then,

we collect the neighborhood vertices of already matched core query vertices

and the corresponding matched data vertices (Lines 5–6). As we recall, the

set Mc maintains the solution pair mc = (uc, vc) of each matched core query

vertex. The set Nq collects the already matched core vertices uc ∈ Mc that are

also in the neighborhood of unxt, whose matches have to be found. Further,

Ng contains the corresponding matched query vertices vc ∈ Mc. As the

recursion proceeds, we find those matchable data vertices of unxt that are in

the neighborhood of all the matched vertices v ∈ Ng so that the query structure

is maintained. In Line 7, for each un ∈ Nq and the corresponding vn ∈ Ng, we

query the neighborhood index N to obtain the candidate solutions Candunxt

that are in the neighborhood of already matched data vertex vn and have the

multi-edge LQ
E(un, unxt), obtained from the query multigraph Q. Finally (Line

7), the set of candidate solutions that are common for every un ∈ Nq are

retained in Candunxt .
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Algorithm 5.4. HOMOMORPHICMATCH(M, I, Q, Uord
c )

1: if |M | = |U | then
2: return GENEMB(M )

3: Emb = ∅
4: FETCH: unxt = u|u ∈ Uord

c

5: Nq = {uc|uc ∈ Mc} ∩ adj(unxt)

6: Ng = {vc|vc ∈ Mc ∧ (uc, vc) ∈ Mc}, where uc ∈ Nq

7: Candunxt =
⋂|Nq |

n=1(QueryNeighIndex(N , LQ
E(un, unxt), vn))

8: Candunxt = Candunxt∩ PROCESSVERTEX(unxt, Q,A,N )

9: for each vnxt ∈ Candunxt do
10: FETCH: U sat

nxt = {u|u ∈ Vs ∧ (unxt, u) ∈ E(Q)}
11: if U sat

nxt �= ∅ then
12: Msat = MATCHSATVERTICES(A,N , Q, U sat

nxt, vnxt)

13: if Msat �= ∅ then
14: for every [us, V s] ∈ Msat do
15: UPDATE: Ms = Ms ∪ [us, V s]

16: UPDATE: Mc = Mc ∪ (unxt, vnxt)

17: Emb = Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

18: else
19: UPDATE: Mc = Mc ∪ (unxt, vnxt)

20: Emb = Emb ∪ HOMOMORPHICMATCH(M, I, Q, Uord
c )

21: return Emb

Further, the candidate solutions are refined using the PROCESSVERTEX

procedure (Line 8). Now, for each of the valid candidate solutions vnxt ∈
Candunxt , we recursively call the HOMOMORPHICMATCH procedure. When

the next query vertex unxt has no satellite vertex attached to it, we update the

core vertex solution set Mc and call the recursion procedure (Lines 19–20).

But when unxt has satellite vertices attached to it, we obtain the candidate
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matches for all the satellite vertices by invoking the MATCHSATVERTICES

procedure (Lines 11–12); if there are matches, we update both the satellite

vertex solution Ms and the core vertex solution Mc and invoke the recursion

procedure (Line 17).

Once all the query vertices have been matched for the current recursion

step, the solution set M contains the solutions for both core and satellite

vertices. Thus, when all the query vertices have been matched, we invoke

the GENEMB function (Line 2), which returns the set of embeddings that

are updated in Emb. The GENEMB function treats the solution vertex vc
of each core vertex as a singleton and performs Cartesian product among

all the core vertex singletons and satellite vertex sets. Formally, Embpart =

{v1c} × · · · × {v|Uc|
c } × V 1

s × · · · × V
|Us|
c . Thus, the partial set of embeddings

Embpart is added to the final result Emb.

5.7. Experimental analysis

In this section, we report on our extensive experiments on two RDF

data sets. We evaluate the time performance and the robustness of AMBER

w.r.t., the state-of-the-art competitors by varying the size and structure of

the SPARQL queries. Experiments are carried out on a 64-bit Intel Core

i7-4900MQ @ 2.80GHz, with 32GB memory, running Linux OS - Ubuntu

14.04 LTS. AMBER is implemented in C++.

5.7.1. Experimental setup

We compare AMBER with the four standard RDF engines:

Virtuoso-7.1 [ERL 12], x-RDF-3X [NEU 10], Apache Jena [CAR 04]

and gStore [ZOU 14b]. For all these competitors, we use the source code

available on the website or obtained by the authors. Another recent work,

Turbo_HOM++ [KIM 15], has been excluded, since it is not publicly

available.

For experimental analysis, we use two RDF data sets: DBPEDIA and

YAGO. DBPEDIA constitutes the most important knowledge base for the

Semantic Web community. Most of the data available in this data set come

from the Wikipedia Infobox. YAGO is a real-world data set built from factual

information obtained from the Wikipedia and WordNet semantic network. The

times required to build the multigraph database as well as to construct the
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indexes are reported in Table 5.3(b). We note that the database building time

and the corresponding size are proportional to the number of triples. Regarding

the indexing structures, we underline that both building time and size are

proportional to the number of edges. For instance, DBPEDIA has the highest

number of edges (∼15M) and, as a result, AMBER uses more time and space

to build and store its data structure.

Dataset # Triples # Vertices # Edges # Edge types

DBPEDIA 33 071 359 4 983 349 14 992 982 676

YAGO 35 543 536 3 160 832 10 683 425 44

(a) Statistics of datasets

Dataset Database Index I
Building Time Size Building Time Size

DBPEDIA 307 1300 45.18 1573

YAGO 379 2400 29.1 1322

(b) Database and index construction time (seconds) and

memory usage (Mbytes)

Table 5.3.

5.7.2. Workload generation

In order to test the scalability and robustness of different RDF engines,

we generate the query workloads considering a similar setting as in [GUB 14,

ALU 14a, HAN 13]. We generate the query workload from the respective RDF

data sets, which are available as RDF triplesets. Specifically, we generate

two types of query sets: a star-shaped and a complex-shaped query set;

furthermore, both query sets are generated for varying sizes (say k) ranging

from 10 to 50 triples, in steps of 10.

To generate star-shaped or complex-shaped queries of size k, we pick an

initial entity at random from the RDF data. Now, to generate star queries,

we check if the initial entity is present in at least k triples in the entire

benchmark, to verify whether the initial entity has k neighbors. If so, we

choose those k triples at random; thus, the initial entity forms the central

vertex of the star structure and the rest of the entities form the remaining

star structure, connected by the respective predicates. To generate complex-

shaped queries of size k, we navigate in the neighborhood of the initial entity

through the predicate links until we reach size k. In both query types, we inject
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some object literals as well as constant IRIs; the remaining IRIs (subjects or

objects) are treated as variables. However, this strategy could choose some

very unselective queries [GUB 14]. In order to address this issue, we set a

maximum time constraint of 60 s for each query. If the query is not answered

in time, then it will not be considered for the final average (a similar procedure

is usually employed for graph query matching [HAN 13] and RDF workload

evaluation [ALU 14a]). We report the average query time as well as the

percentage of unanswered queries (considering the given time constraint) to

study the robustness of the approaches.

5.7.3. Comparison with RDF engines

In this section, we report and discuss the results obtained by different

RDF engines. For each combination of query type and benchmark, we report

the following two plots by varying the query size: the average time and the

corresponding percentage of unanswered queries for the given time constraint.

We recall that the average time per approach is computed only on the set of

queries that were answered.

The experimental results for DBPEDIA are depicted in Figure 5.6.

The time performance (averaged over 200 queries) for star-shaped queries

(Figure 5.6(a)) affirm that AMBER clearly outperforms all the competitors.

Furthermore, the robustness of each approach, evaluated in terms of percentage

of unanswered queries within the stipulated time, is shown in Figure 5.6(b).

For the given time constraint, x-RDF-3X and Jena are unable to output results

for size 20 and 30 onward, respectively. Although Virtuoso and gStore output

results until query size 50, their time performance is still poor. However, as the

query size increases, the percentages of unanswered queries for both Virtuoso
and gStore keep on increasing from ∼0% to 65% and from ∼45% to 95%,

respectively. On the contrary, AMBER answers >98% of the queries, even for

queries of size 50, establishing its robustness.

Analyzing the results for complex-shaped queries, we observe that in

Figure 5.6(c), x-RDF-3X and Jena are the slowest engines; Virtuoso and gStore
perform better than them but nowhere close to AMBER. We further observe

that x-RDF-3X and Jena are the least robust as they do not output results for

size 30 onward (Figure 5.6(d)); on the contrary, AMBER is the most robust

engine as it answers >85% of the queries even for size 50. The percentages of
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unanswered queries for Virtuoso and gStore increase from 0% to ∼80% and

from 25% to ∼70%, respectively, as we increase the size from 10 to 50.

(a) Time performance (Star queries) (b) % Unanswered queries (Star queries)

(c) Time performance (Complex queries) (d) % Unanswered queries (Complex queries)

Figure 5.6. Evaluation of time performance and robustness for
DBPEDIA. For a color version of this figure, see

www.iste.co.uk/pivert/nosql.zip

The results for YAGO are reported in Figure 5.7. For star-shaped queries,

the time performance of AMBER is 1–2 orders of magnitude higher than

that of its nearest competitor Virtuoso, as observed in Figure 5.7(a), and the

performance remains stable even with increasing query size (Figure 5.7(b)).

x-RDF-3X and Jena are not able to output results for size 20 onward. As

observed for DBPEDIA, Virtuoso seems to become less robust with the

increasing query size. For size 20–40, the time performance of gStore seems
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to be higher than that of Virtuoso, due to the fewer queries that are being

considered. Conversely, AMBER is able to supply answers most of the time

(>98%). It can be observed from the results for complex-shaped queries that

AMBER is still the best in time performance, as seen in Figure 5.7(c); Virtuoso
and gStore are the closest competitors. Only for sizes 10 and 20, Virtuoso
seems more robust than AMBER. Jena and x-RDF-3X do not answer queries

for size 20 onward, as seen in Figure 5.7(d).

(a) Time performance (Star queries) (b) % Unanswered queries (Star queries)

(c) Time performance (Complex queries) (d) % Unanswered queries (Complex queries)

Figure 5.7. Evaluation of time performance and robustness for YAGO.
For a color version of this figure, see www.iste.co.uk/pivert/nosql.zip

To summarize, we observe that Virtuoso is robust for complex-shaped
smaller queries (10–20), but fails for larger (>20) queries. x-RDF-3X fails
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for queries with size larger than 10. Jena shows reasonable behavior until

size 20 but not from size 30 onward. gStore shows a reasonable behavior for

size 10, but its robustness deteriorates from size 20 onward. AMBER clearly

outperforms the state-of-the-art approaches in terms of time performance and

robustness.

5.8. Conclusion

In this chapter, a multigraph-based engine AMBER has been proposed in

order to answer SPARQL queries. The multigraph representation has given

us the following two advantages: (1) it enables us to construct lightweight

indexing structures that ameliorate the time performance of AMBER; (2) the

graph representation itself motivates us to exploit recent graph management

techniques. The proposed engine AMBER has been tested over large RDF

triplestores. We have observed that AMBER outperforms its state-of-the-art

competitors on two main aspects: (1) its robustness with respect to the query

size and (2) its excellent time performance.
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6

Fuzzy Preference Queries to NoSQL
Graph Databases

6.1. Introduction

The motivations for integrating user preferences into database queries are

manifold [HAD 11]. First, it has become desirable to offer more expressive

query languages that can be more faithful to what a user intends to say.

Second, the introduction of preferences in queries provides a basis for rank-

ordering the retrieved items, which is especially valuable in cases of large

sets of items satisfying a query. Third, a classical query may also have an

empty set of answers, while a relaxed (and thus less restrictive) version of

the query might be matched by some items. A great deal of work has been

carried out on preference queries in relational databases [STE 11] and more

specifically concerning the fuzzy querying of relational databases, see, for

instance, [PIV 12], which led in particular to a fuzzy extension of SQL,

called SQLf [BOS 95]. However, even though relational databases are still

widely used, the need to handle complex data has led to the emergence

of other types of data models. Thus, a new concept has started to attract

much attention in the database world, namely that of graph databases (see

[ANG 08, WOO 12, ANG 12]). The basic purpose of graph databases is to

efficiently manage networks of entities, where each node is described by a

set of characteristics (e.g. a set of attributes) and each edge represents a link

Chapter written by Arnaud CASTELLTORT, Anne LAURENT, Olivier PIVERT, Olfa SLAMA and

Virginie THION.

NoSQL Data Models: Trends and Challenges, First Edition. Edited by Olivier Pivert. 
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between entities. Such a database model has many potential applications, for

example, modeling social networks, RDF data, cartographic databases and

bibliographic databases.

Graph databases raise new challenges in terms of flexible querying, since

the following two aspects can be involved in the preferences that a user

may express: (1) the content of the nodes/edges and (2) the structure of the

graph itself. Furthermore, graph database management systems still lack query

languages with a clear syntax and semantics [BAR 13].

In this chapter, we present a framework that makes it possible to introduce

fuzzy preferences in queries over graph databases. We first introduce, in

section 6.2, the notion of graph databases and preliminary notions concerning

fuzzy set theory. Then, in section 6.3, we present, following a common

perspective, two contributions of the scientific literature that allow for a

flexible querying of crisp and fuzzy graph databases. These contributions

choose the same approach which consists in extending a query language in

order to introduce fuzzy preferences in graph pattern queries. Both these

approaches consider the extension of the Cypher query language implemented

in the Neo4j graph database management system. Implementation issues

are exposed in section 6.4, and related work is discussed in section 6.5.

Conclusions drawn from this chapter are presented in section 6.6.

6.2. Preliminary statements

We first introduce some background notions concerning graph databases in

section 6.2.1 and then fuzzy set theory in section 6.2.2.

6.2.1. Graph databases

We present the graph data model in section 6.2.1.1 and explain how to

query such a graph database through pattern queries in section 6.2.1.2. We

then present the Cypher query language in section 6.2.1.3, which is a concrete

language that makes it possible to query a graph database in the Neo4j graph

database management system.

6.2.1.1. The graph data model

A graph database model is a model in which the data structures for the

instances and/or the schema are modeled as a directed, possibly labeled graph
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or generalizations of the graph structure, where data manipulation is expressed

by graph-oriented operations and type constructors [ANG 08]. Such a model

makes it possible to naturally model networks of entities, where each node is

described by a set of characteristics (for instance, a set of attributes) and each

edge represents a link between entities, for example, modeling social networks,

RDF data, cartographic databases and bibliographic databases.

There are different models for graph databases that consider different

variations of the definition of a graph, for example, flat graph, hypergraph,

hypernodes, directed or undirected edges and simple or complex relations.

We refer the reader to [ANG 08] for an overview of graph data models

and [ANG 12] for a comparison of some of them. We consider here the model

that makes it possible to represent data as a finite directed graph with labeled

edges, where properties may be embedded in nodes and edges. Such a model

is referred to as the attributed graph model (a.k.a. the property graph model).

An instance of this model is simply called graph data in the following.

Let us formally define the concept of data graph that we consider in the

following. We first assume the existence of the following pairwise disjoint

sets: a set V of nodes, a set E of labels for (directed) edges and a set A of

attribute names. Definition 6.1 is a formal definition of data graph based on the

attributed graph model.

DEFINITION 6.1 (Data Graph).– A data graph, a.k.a. graph database, G
is a quadruple (V, R, κ, ζ), where V is a finite set of nodes, R =
{re | e ∈ E and re ⊆ V × V } is a set of labeled edges between nodes of
V , and κ (resp. ζ) is a function in A× V (resp. A× (V × E × V )) assigning
attributed values to nodes (resp. edges) of G.

We suppose that each node n is identified by an id attribute denoted by n.id.

Nodes are assumed to be typed. If n is a node of V , then Type(n) denotes its

type.

EXAMPLE 6.1.– Figure 6.1, referred to as DB in the following, is an example
of a data graph inspired from an excerpt of DBLP1. This graph contains
scientific publications and authors’ names. In DB, the nodes WWW12, Pods11
and Pods13 are of type Conference; the nodes PodsBBV11, PodsTU13,

1 http://www.informatik.uni-trier.de/ley/db/.
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PodsB13, TodsS81 and WWW_VVT12 are of type Article; the nodes Pods,
Tods and WWW are of type Series and the other nodes are of type Author.
Attribute values attached to each node/edge are denoted by a set of key–value
pairs. For instance, the set {year:2013, pages:9} attached to the node
PodsTU13 assigns to this node the value 2013 to its attribute year and the
value 9 to its attribute pages.

6.2.1.2. Querying a graph database

Most of the query languages for graph databases are based on graph pattern

matching. Roughly speaking, a query is a graph pattern that is found in the

graph database. The evaluation process consists in binding elements of the

pattern in subgraphs of the database.

A graph pattern query takes the form of a graph where variables and

conditions can occur on nodes and edges. The answer to such a query P
over a graph database G is the largest set of subgraphs of G defined by

{g ∈ P(G) | g "matches" P}, where P(G) is the set of subgraphs of G and

g "matches" P iff there is a homomorphism h from nodes and labels of P
to g [GAL 06, BAR 14] and each node h(n) (resp. label h(e)) satisfies its

associated conditions.

A query may denote a simple path connecting two nodes, a regular

path query (path defined by a regular expression) or more expressively a

conjunctive regular path query (a graph pattern where each edge is a regular

path expression) possibly including specific navigational capabilities, for

example, inverse traversal, nested regular expressions or memory registers

(see [BAR 13, LIB 13, BAR 14]).

EXAMPLE 6.2.– Figure 6.2 is a simple example of a graph pattern (query) that
aims at retrieving the authors with an article published in the Pods conference
after 2010 and another article in the WWW conference. The elements au1, ar1,
ar2, s1 and s2 are query variables. Each WHERE clause associated with a
node denotes a condition over the node. The elements Conference, Author
and Article are node types.

The answer to this query over the data graph DB (Figure 6.1) is the set
of subgraphs of Figure 6.3, which are the subgraphs of DB that match the
pattern.
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{where: NY, USA,

when: June, 2013}

{title: The ...,

year: 2012}

{year: 2011, ...}

{year: 2013, pages: 9}

{year: 2013, ...}

{vol:37, issue:5}

Figure 6.1. A data graph DB inspired from DBLP

6.2.1.3. The Neo4j Cypher query language

A graph database management system enables the management of

graph databases, facilitating efficient storage and querying of such data.

Let us mention the existing systems AllegroGraph [ALL 18], DataStax

Enterprise Graph [DAT 18], InfiniteGraph [INF 18], Neo4j [NEO 18],

OrientDB [ORI 18] and Sparksee [SPA]. Among these, Neo4j supports the

attributed graph model (see section 6.2.1.1) and provides a query language,

called Cypher [NEO 13], based on graph pattern matching (see section 6.2.1.2)

which supports five of the essential kinds of graph queries [ANG 12].

Cypher [NEO 13] is based on ASCII-art for graph pattern representation.

A graph pattern expressed in the Cypher formalism consists of a set of

expressions of the form

(n1:Type1)-[exp]->(n2:Type2)
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where n1 and n2 are node variables, Type1 and Type2 are node types and exp
describes the relationship between n1 and n2.2 Such an expression denotes a
path satisfying the form exp going from a node of type Type1 to a node of
type Type2. A simple path expression could be e:lab, where e is an edge
variable and lab is a label of E , denoting that an edge labeled by e goes from
n1 to n2. All the arguments are individually optional, so the merest form of an
expression is ()-[]->(), denoting a path made of two nodes connected by
any edge. Additional constraints, like conditions over node and edge variables,
may be expressed on node and edge variables in a WHERE clause.

EXAMPLE 6.3.– Query 6.1 is an example of a Cypher graph pattern query.

1 MATCH
2 (ar1:Article)-[:part_of]->()-[: series]->(s1),
3 (ar2:Article)-[:part_of]->()-[series]->(s2),
4 (ar1)-[ : creator]->(au1:Author),
5 (ar2)-[ : creator]->(au1:Author)
6 WHERE s1.name='WWW' AND s2.name='Pods' AND ar2.year>2010
7 RETURN au1, ar1, ar2

Query 6.1. Pattern of Figure 6.2, expressed in the Cypher formalism

Lines 1–6 of Query 6.1 including the MATCH and WHERE clauses constitute
the graph pattern. This pattern is the one graphically represented in Figure 6.2.
The RETURN clause of Line 7 makes it possible to define which parts of the
pattern should be returned (nodes, relationships or their properties) and the
matches of the node variables au1, ar1 and ar2 here.

Figure 6.4 is a screenshot of the Rabbithole Console [RAB] which makes it
possible to query, using the Cypher language, a Neo4j data graph. This figure
shows the result of Query 6.1 applied to the data graph of Figure 6.1. The
answers are the instantiations of the variables au1, ar1 and ar2 in the data
subgraphs that match the graph pattern defined in Lines 1–6 (these subgraphs
are given in Figure 6.3).

2 Regular expressions are rather simple in version 3.0 of Cypher but one can easily imagine a
future extension of the language that makes it possible to define more complex expressions.
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Figure 6.2. Example of graph pattern P

Serge

WWW_

VVT12

Pods_

TU13

WWW12 Pods13

WWW Pods

creator creator

part_of part_of

series series

Eva

WWW_

VVT12

Pods_

TU13

WWW12 Pods13

WWW Pods

creator creator

part_of part_of

series series

Serge

WWW_

VVT12

Pods_

BBV11

WWW12 Pods13

WWW Pods

creator creator

part_of part_of

series series

Figure 6.3. Subgraphs of DB matching pattern of Figure 6.2

More generally, Cypher offers some more evolved functionalities, for

instance, using the following clauses: the WITH clause allows query parts to be

chained together, piping the results from the one to be used as starting points

or criteria in the next; the UNWIND clause expands a list into a sequence of

rows; the MERGE clause ensures that a pattern exists in the graph or creates it

if it does not exist; the CREATE clause creates nodes and relationships; the SET

clause updates labels on nodes and properties on nodes and relationships; the

DELETE clause removes graph elements (nodes, relationships and paths) and

the REMOVE clause removes properties and labels from graph elements.

We introduced here only some of the features of the Cypher language. For

a comprehensive presentation of Cypher, the reader is referred to [NEO 13,

CYP].
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Figure 6.4. Answers of Query 6.2 applied to the data graph of
Figure 6.1 (screenshot of the Rabbithole Neo4j Console)

6.2.2. Fuzzy set theory

Fuzzy set theory was introduced by Zadeh [ZAD 65] for modeling classes

or sets whose boundaries are not clear-cut. For such objects, the transition

between full membership and full mismatch is gradual rather than quick.

Typical examples of such fuzzy classes are those described using adjectives

of the natural language, such as young, cheap, recent and fast. Formally, a

fuzzy set F on a referential U is characterized by a membership function

μF : U → [0, 1], where μF (u) denotes the grade of membership of u in F . In

particular, μF (u) = 1 reflects full membership of u in F , whereas μF (u) = 0
expresses absolute non-membership. The condition 0 < μF (u) < 1 indicates

partial membership. The following two crisp sets are of particular interest

when defining a fuzzy set F : the core C(F ) = {u ∈ U | μF (u) = 1}, which

gathers the prototypes of F , and the support S(F ) = {u ∈ U | μF (u) > 0}.

In practice, the membership function associated with F is often of a

trapezoidal shape. Then, F is expressed by the quadruplet (A, B, a, b), where

C(F ) = [A, B] and S(F ) = [A − a, B + b], as depicted in Figure 6.5.

Following this shape, fuzzy ascending or decreasing membership functions
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may be defined in order to define fuzzy terms like short in Figure 6.6 or recent
in Figure 6.7.

A− a A B B + b U
0

1 μF

Figure 6.5. Typical trapezoidal membership function

δ = 3 γ = 5
0

1

μshort

path length

Figure 6.6. Representation of the fuzzy term short

δ = 2010 γ = 2014 2018
0

1

μrecent

year

Figure 6.7. Representation of the fuzzy term recent

The α-cut of a fuzzy set F , denoted by Fα, is an ordinary set of elements

whose degree of satisfaction is at least equal to α: Fα = {u ∈ U |μF (u) ≥ α}.
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Thus, C(F ) and S(F ) are two particular α-cuts of F , where α = 1 and 0+,

respectively.

Let F and G be two fuzzy sets on the universe U , such that F ⊆ G iff

μF (u) ≤ μG(u), ∀u ∈ U . The complement of F , denoted by F c, is defined by

μF c(u) = 1−μF (u). Furthermore, F ∩G (resp. F ∪G) is defined as follows:

μF∩G(u) = min(μF (u), μG(u)) (resp. μF∪G(u) = max(μF (u), μG(u))).
As usual, the logical counterparts of the theoretical set operators ∩, ∪ and the

complementation operator correspond to the conjunction ∧, disjunction ∨ and

negation ¬ (see [DUB 00] for more details).

6.3. Fuzzy preference queries over graph databases

In the following, we present two scientific contributions that introduce

fuzzy preferences in pattern queries over graph databases. In section 6.3.1.

We present a pioneer work that extends the Cypher language in order to

express fuzzy preference queries over attributes (a.k.a. properties), nodes and

relationships in order to query a crisp graph database. Then, in section 6.3.2.

We present a more general framework that makes it possible to express fuzzy

preference pattern queries in order to query a fuzzy graph database.

6.3.1. Fuzzy preference queries over crisp graph databases

In this section, we address fuzzy selection (READ) queries over regular

NoSQL Neo4j graph databases. We introduce a new query language built on

top of Cypher to address flexible queries, which we call CYPHERF. We claim

that fuzziness can be handled at the following three levels: over attributes, over

nodes and over relationships.

The CYPHERF extension affects the MATCH, WHERE and RETURN clauses

from Cypher by allowing for the application of fuzzy terms to attributes,

nodes and relationships occurring in the query graph pattern, some examples

of which are given below.

6.3.1.1. Fuzzy conditions over attributes

Fuzzy queries over attributes are defined by linguistic terms corresponding

to fuzzy sets and fuzzy comparators (e.g. approximately equal and much
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greater than). The queries are different depending on whether the attributes

being addressed are linked to a node or a relationship.

In the WHERE clause, it is possible to search for recent papers in some

databases, where recent is the fuzzy term defined in Figure 6.7 (for the sake

of simplicity, the fuzzy labels and membership functions are denoted by the

same words hereafter). Then, the answers may be ordered by recentness over

this attribute by specifying it in the ORDER BY clause. The RECENT function

takes a numerical value as input and outputs a numerical value ranging [0, 1].

Syntactically, the CYPHERF language makes it possible to apply fuzzy

conditions to the attributes that appear in the WHERE, RETURN and ORDER BY

clauses.

EXAMPLE 6.4.– Query 6.2 retrieves recent papers, ordered by recentness.

1 MATCH (art:Article)

2 WHERE RECENT(art.year) > 0

3 RETURN art
4 ORDER BY RECENT(art.year) DESC

Query 6.2. Query retrieving recent papers ordered by recentness

The answer to this query applied to the data graph of Figure 6.1 is given in
Figure 6.8.

Figure 6.8. Answers of Query 6.2 applied to the
data graph of Figure 6.1
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It is also possible to integrate fuzzy labels in the MATCH clause.

EXAMPLE 6.5.– Query 6.3 allows us to retrieve authors of recent articles,
ordered by the recentness of the article.

1 MATCH (art:Article {RECENT(art.year)>0})-[: creator]->(a:Author)

2 RETURN art, a

3 ORDER BY RECENT(art.year) DESC

Query 6.3. Authors of recent papers

In the RETURN clause, no selection will be operated, but fuzzy labels can be

added in order to show the users the degree to which some values match fuzzy

sets.

EXAMPLE 6.6.– Query 6.4 allows us to retrieve authors of recent articles,
ordered by the recentness of the article.

1 MATCH (art:Article)-[:creator]->(a:Author)

2 RETURN art, a, RECENT(art.year) AS 'Satisfaction_degree'

3 ORDER BY Satisfaction_degree DESC

Query 6.4. Fuzziness in the RETURN clause

The answer to this query applied to the data graph of Figure 6.1 is given in
Figure 6.9.

When considering graph data, graphical representations are also of great

interest for helping the user to understand and analyze data. For instance,

Figure 6.10 shows how the result of Query 6.4 (authors of recent articles)

is displayed in the Rabbithole Console [RAB], overprinted on the table that

displays the answers to this query. The nodes that belong to the answers to

the query appear in red (the blue nodes belong to the initial graph but do not

belong to the answers). Here, the visualization exhibits two cliques, which

form the network associated with the elements of the answers. This example

demonstrates the interest of a graphical display.
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Figure 6.9. Answers to Query 6.2 applied
to the data graph of Figure 6.1

Figure 6.10. Displaying the result of a Cypher Query. For a color
version of this figure, see www.iste.co.uk/pivert/nosql.zip

It would thus be interesting to investigate how fuzzy queries over graphs

may be displayed, showing for every object to which extents it matches the

result. For this purpose, a possible solution would be to use the work on fuzzy

graph representation and distorted projection from the literature as done in

anamorphic maps [GRI 80].
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6.3.1.2. Fuzzy conditions over nodes

Dealing with fuzzy queries over nodes makes it possible to retrieve similar

nodes.

Syntactically, the CYPHERF language allows us to apply fuzzy conditions to

the attributes that appear in the WHERE clause, the RETURN clause or the ORDER

BY clause. For instance, it is possible to retrieve similar hotels, as shown in

Query 6.5.

1 MATCH (a1:Author),(a2:Author)

2 WITH a1 AS Aut1, a2 AS Aut2, SimilarTo(Aut1,Aut2) AS sim

3 WHERE sim > 0.7

4 RETURN Aut1,Aut2,sim

Query 6.5. Getting Similar Authors

In this framework, the link between nodes is based on the definition of

measures between the descriptions. Such measures merge the several attributes

that the nodes embed. Similarity measures may, for instance, be used and

authors may all the more be considered as their ages and common research

topics are similar.

6.3.1.3. Fuzzy conditions over relationships

As for nodes, such queries may be based not only on attributes but also the

graph structure.

In Cypher, the structure of the pattern being searched is mostly defined

in the MATCH clause. The first attempt to extend pattern matching to fuzzy

pattern matching is to consider chains and depth matching. Chains are defined

in Cypher in the MATCH clause with consecutive links between objects. If a

node a is linked to an object b at depth 2, then the pattern is written as

(a) − [∗2]− > (b). If a link between a and b without regard to the depth

in-between is searched for, then it is written (a)− ()− > (b). The mechanism

also applies when searching for objects linked through a range of nodes (e.g.

between 3 and 5): (a)− [∗3..5]− > (b).

We now introduce fuzzy descriptors to define extended patterns, where

depth is imprecisely described. It is then possible to search, for example, for

customers linked through almost 3 hops. The syntax ∗∗ indicates a fuzzy linker,

as illustrated by Query 6.6.
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1 MATCH (a1:Author)-[:KNOWS**almost3]->(a2:Author)

2 RETURN a1,a2

Query 6.6. Fuzzy Patterns

This is related to fuzzy tree and graph mining [LÓP 09], where some

patterns emerge from several graphs even if they do not occur in exactly the

same way everywhere regarding the structure.

Another possibility is to not consider chains but patterns where several links

from and to nodes exist.

In the current example, common journals may, for instance, be considered

as common when they are chosen by many people. This is similar to the way

famous people are detected if they are followed by many people on social

networks. In this example, a conference is popular if a large proportion of

authors submit papers to it. In Cypher, such queries are defined by using

aggregators. For instance, Query 6.7 retrieves articles created by at least two

persons.

1 MATCH (art:Article)-[:CREATED_BY]->(a:Author)

2 WITH a AS Aut, count(*) AS cpt

3 WHERE cpt>1

4 RETURN Aut

Query 6.7. Aggregation

Such crisp queries can be extended to consider fuzziness, as proposed in

Query 6.8.

1 MATCH (art:Article)-[:CREATED_BY]->(a:Author)

2 WITH a AS Aut, count(*) AS cpt

3 WHERE COMMON(cpt) > 0

4 RETURN Aut

Query 6.8. Aggregation
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All fuzzy clauses described in this section can be combined using

conjunctive and disjunctive operators. The question that rises is to implement

them in the existing Neo4j engine, which is further discussed in section 6.4.

6.3.2. Fuzzy preference queries over fuzzy graph databases

By nature, data may express gradual information (rather than Boolean

information). Friendship, influence and collaboration are examples of gradual

relations that should be associated with a degree quantifying the extent to

which a relation holds between two resources. The crisp graph model may

then be extended into the notion of a fuzzy data graph, where a degree may

be attached to edges in order to express the "intensity" of any kind of gradual

relationship (e.g. likes, is friends with and is about). In [PIV 14, PIV 15], the

authors considered a more general framework for introducing preferences in

graph pattern queries over fuzzy graph data, where preferences may concern

the data or the structure of the graph. After describing the formal concept of

the fuzzy graph and exhibiting relevant features for fuzzy preferences over

such a model (sections 6.3.2.1 and 6.3.2.2 respectively), we introduce this

framework, which includes a theoretical contribution defining the concepts

considered (presented in section 6.3.2.3) and an instantiation taking the form

of an extension of the Cypher language (presented in section 6.3.2.4).

6.3.2.1. Fuzzy graphs

In its basic form, a graph is a pair (V,R), where V is a set and R is a relation

on V . The elements of V (resp. R) correspond to the vertices (resp. edges) of

the graph. Similarly, any fuzzy relation ρ on a set V can be regarded as defining

a weighted graph or fuzzy graph [ROS 75], where the edge (x, y) ∈ V × V
has weight or strength ρ(x, y) ∈ [0, 1].

As noted in [YAG 13], the fuzzy relation ρ may be viewed as a fuzzy subset

on V × V , which allows us to use much of the formalism of fuzzy sets.

For example, we can say that ρ1 ⊆ ρ2 if ∀(x, y), ρ1(x, y) ≤ ρ2(x, y).
Some notable properties that can be associated with fuzzy relations are

reflexivity (ρ(x, x) = 1, ∀x), symmetry (ρ(x, y) = ρ(y, x)) and transitivity

(ρ(x, z) ≥ maxy min(ρ(x, y), ρ(y, z))).

An important operation on fuzzy relations is composition. We assume that

ρ1 and ρ2 are two fuzzy relations on V . Thus, composition ρ = ρ1 ◦ ρ2
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is also a fuzzy relation on V s.t. ρ(x, z) = maxy min(ρ1(x, y), ρ2(y, z)).
The composition operation can be shown to be associative: (ρ1 ◦ ρ2) ◦ ρ3 =
ρ1 ◦ (ρ2 ◦ ρ3). The associativity property allows us to use the notation

ρk = ρ ◦ ρ ◦ . . . ◦ ρ for the composition of ρ with itself k − 1 times. In

addition, following [YAG 13], we define ρ0 to be s. t. ρ0(x, y) = 0, ∀(x, y).

Fuzzy graphs as defined above may be generalized to the case where a

fuzzy set of vertices is considered. Then, denoting by F the fuzzy subset

of V considered, the corresponding fuzzy graph is defined as (V, F, ρF ).
In this case, we let ρF be a relation on V defined as ρF (x, y) =
min(ρ(x, y), μF (x), μF (y)), where μF denotes the membership function

attached to F . In the following, we only consider the simple case of a crisp set

of vertices.

If ρ is symmetric, (V, ρ) is said to be an undirected graph. Otherwise, we

shall refer to (V, ρ) as a directed graph. Without loss of generality, we consider

directed graphs in the following.

6.3.2.2. Relevant features for fuzzy preferences over fuzzy graphs

We now describe the main elements that may appear relevant in a fuzzy

query addressed to a graph database. The following two types of preferences

should be considered: those on content and those on structure.

Preferences on the node content. The idea is to express flexible conditions

about attributes associated with nodes and/or vertices of the graph. An

example is: “find the people who are young, highly educated and live in

Eastern Europe” (assuming that each node contains information about the

age, education level, address, etc., of the person it corresponds to). Compound

conditions may also be expressed using a large range of fuzzy connectives.

We do not get into more detail as this aspect has been studied in depth in

section 6.3.1 whose concepts can easily be extended to fuzzy graphs.

Preferences on the graph structure. Hereafter, we describe the concepts

of fuzzy graph theory that appear the most relevant in a perspective of graph

database querying. We denote a fuzzy graph by G = (V, ρ).

Strength of a path. A path p in G is a sequence x0 → x1 → . . . → xn
(n ≥ 0) s. t. ρ(xi−1, xi) > 0, 1 ≤ i ≤ n where n is the number of links in the

path. The strength of the path is defined as:

ST (p) = min
i=1..n

ρ(xi−1, xi). [6.1]
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In other words, the strength of a path is defined as the weight of the weakest

edge of the path. Two nodes for which there exists a path p with ST (p) > 0
between them are called connected. It is possible to show that ρk(x, y) is the

strength of the strongest path from x to y containing at most k links. Thus,

the strength of the strongest path joining any two vertices x and y (using any

number of links) may be denoted by ρ∞(x, y).

Length and distance. The length of a path p = x0 → x1 → . . . → xn in

the sense of ρ is a concept defined in [ROS 75] as:

Length(p) =

n∑

i=1

1

ρ(xi−1, xi)
. [6.2]

Clearly, Length(p) ≥ n (it is equal to n if ρ is Boolean, in particular if G
is a crisp graph). We can then define the distance between two nodes x and y
in G as:

δ(x, y) = min
all paths x to y

Length(p). [6.3]

It is the length of the shortest path from x to y. It can be shown that δ is a

metric [ROS 75].

α-cut of a relation. This is defined as ρα = {(x, y) | ρ(x, y) ≥ α} where

α ∈]0, 1]. We note that ρα is a crisp relation.

Preference combination. Different types of connectives may be considered

for combining conditions about the content or the structure of the graph: “flat”

(min, max, arithmetic mean, etc.), weighted (weighted mean, OWA, quantified

proposition, etc.; see [FOD 00]) or hierarchical.

In [YAG 13], different types of fuzzy preference criteria that appear

relevant in the context of graph databases are discussed, without getting into

the detail of how to express them using a formal query language.

6.3.2.3. Fuzzy preference queries over fuzzy graph databases

The only contributions that extend a graph pattern query language in order

to express fuzzy preferences over the structure of a fuzzy graph are [PIV 14,

PIV 15, PIV 16b]. Let us recall again here that a crisp graph is a special case

of fuzzy graph, meaning that the query extension proposed in these works can

also be used for querying a crisp graph.
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We are interested in fuzzy graph databases, where nodes and edges can

carry data (e.g. key–value pairs in attributed graphs; see section 6.2.1).

In [PIV 15], the authors proposed an extension of the definition of a fuzzy
graph into that of a fuzzy data graph (which can also be seen as a fuzzy

extension of Definition 6.1).

DEFINITION 6.2 (Fuzzy data graph).– Assuming the existence of a set E of
labels, a fuzzy data graph G is a quadruple (V, R, κ, ζ), where V is a
finite set of nodes (each node n is identified by n.id), R =

⋃
e∈E{ρe :

V × V → [0, 1]} is a set of labeled fuzzy edges between nodes of V and
κ (resp. ζ) is a function assigning an attributed value to nodes (resp. edges)
of G.

{where: NY, USA,

when: June, 2013}

{title: The ...,

year: 2012}

{year: 2011, ...}

{year: 2013, pages: 9}

{year: 2013, ...}

{vol:37, issue:5}

Figure 6.11. A fuzzy data graph FDB inspired from DBLP

EXAMPLE 6.7.– Figure 6.11 is an example of a fuzzy data graph. This fuzzy
data graph is an extension of the data graph of Figure 6.1, with some fuzzy
edges (with a degree in brackets). In this example, the degree associated



186 NoSQL Data Models

with A-contributor-> B denotes the extent to which author A contributed
to the works of author B, calculated by the proportion of journal papers co-
written by A and B in the total number of journal papers written by B. The
degree associated with A-creator-> B denotes the extent to which author A
participated in the publication of work by author B. This degree may be given
by the authors themselves. Crisp edges are special cases of fuzzy edges for
which the degree is equal to 1 (this is considered as being the default degree
value associated with edges).

We now move to the definition of queries in which fuzzy preferences may

appear. To this aim, we define the notion of fuzzy graph pattern [PIV 14]

applied to a possibly fuzzy data graph. This notion is an extension of the crisp

graph pattern notion [FAN 12] shown to have good properties for practical

implementation.

The notion of fuzzy regular expression, which extends the notion of regular

expression, should be introduced first. Definition 6.3 defines its syntax, and

Definition 6.4 defines its interpretation.

DEFINITION 6.3 (Fuzzy regular expression).– A fuzzy regular expression is an
expression of the form:

F ::= e |F ·F |F ∪ F |F ∗ |FCond

where:

– e ∈ E ∪ {_} denotes an edge labeled by e, with the wildcard symbol
(underscore) denoting any label in E;

– F ·F denotes a concatenation of expressions;

– F ∪ F denotes alternative expressions;

– F ∗ denotes the repetition of an expression;

– FCond denotes paths p satisfying F and the condition Cond, which is a
Boolean combination of atomic formulas of the form Prop is Fterm, where
Prop is a property defined on p and Fterm denotes a predefined or user-
defined fuzzy term like short (see Figure 6.6 (resp. Figure 6.7), which gives a
membership function associated with the fuzzy term short (resp. recent)).

In the following, we limit properties to {ST, Length} denoting resp.
ST (p) (see equation [6.1]) and Length(p) (see equation [6.2]). Examples
of conditions of this form are Length is short and ST is strong. We note
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that Boolean conditions of the form Prop op a, where a is a constant and op

is a crisp comparator, are just a special case.

In the following, giving a fuzzy regular expression f , f+ is a shortcut

notation for f ·f∗, fk stands for f ·f · · · ·f with k occurrences of f and fn,m is

a shortcut for
⋃m

i=n f
i.

A fuzzy regular expression is said to be simple if it is of the form e, where

e ∈ E ∪ {_} (it denotes a single edge).

DEFINITION 6.4 (Fuzzy regular expression matching).– Given a path p and
a fuzzy regular expression exp, p matches exp with a satisfaction degree of

μexp(p) defined as follows, according to the form of exp (in the following, f ,
f1 and f2 are fuzzy regular expressions):

– exp is of the form e with e ∈ E (resp. “_”). If p is of the form v1
e′−→ v′1,

where e′ = e (resp. where e′ ∈ E), then μexp(p) = 1 else μexp(p) = 0.

– exp is of the form f1·f2. Let P be the set of all pairs of paths (p1, p2) s.t.
p is of the form p1p2. We have: μexp(p) = maxP (min(μf1(p1), μf2(p2))).

– exp is of the form f1 ∪ f2. We have: μexp(p) = max(μf1(p), μf2(p)).

– exp is of the form f∗. If p is an empty path, then μexp(p) = 1. Otherwise,
we denote by P the set of all tuples of paths (p1, · · · , pn) (n > 0) s.t. p is of
the form p1· · ·pn. We have: μexp(p) = maxP (mini∈[1..n](μf (pi))).

– exp is of the form fCond, where Cond is a (possibly compound) fuzzy
condition. We have: μexp(p) = min(μf (p), μCond(p)), where μCond(p) is the
degree of satisfaction of Cond by p.

Not matching is equivalent to matching with a degree 0.

EXAMPLE 6.8.– Figure 6.12 represents some paths from the fuzzy data graph
depicted in Figure 6.11 that somewhat match the following fuzzy regular
expressions:

– e1 = creator · contributor+ is a fuzzy regular expression. All paths pi
(i ∈ [1..4]) of Figure 6.12 match e1 with a satisfaction degree of μe1(pi) = 1.

– e2 = (creator · contributor+)ST>0.4 is a fuzzy regular expression.
Path p4 is the only one of Figure 6.12 that matches e2 (as ST (p1) = 0.3,
ST (p2) = 0.3, ST (p3) = 0.01 and ST (p4) = 0.58), with μe2(p4) = 1.
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– e3 = creator · (contributor+)Length is short, where short is the
fuzzy term of Figure 6.6, is a fuzzy regular expression. Paths p1, p2 and
p4 of Figure 6.12 match e3 with μe3(p1) = 0.83 as μshort(1/0.3) = 0.83
(where 1/0.3 is the length of path from Serge toAnna), μe3(p2) = 0.67 as
μshort(1/0.3 + 1) = 0.67 (where 1/0.67 is the length of the short path from
Serge to Yael) and μe3(p4) = 1 as μshort(1/0.58) = 1. Path p3 does not
match e3 as μshort(1/0.01) = 0. �

(p1)
WWW_VVT12 Serge Anna

creator contributor (0.3)

(p2)
Pods_TU13 Serge Anna Yael

creator contributor (0.3) contributor (1)

(p3)
Tods_S81 Michel Serge

creator contributor (0.01)

(p4)
WWW_VVT12 Serge Sophie

creator contributor (0.58)

Figure 6.12. Fuzzy regular expression matching

We now introduce the notion of a fuzzy graph pattern, which is a directed

crisp graph with conditions on nodes and edges, types on nodes and where

edges are labeled by fuzzy regular expressions that denote paths. Definition 6.5

defines the syntax of a fuzzy graph pattern, and Definition 6.6 defines its

interpretation.

DEFINITION 6.5 (Fuzzy graph pattern).– Let F be a set of
fuzzy terms. A fuzzy graph pattern is defined as a sextuple:
P = (VP , EP , f

path
e , f cond

n , f cond
e , f type

n ), where

– VP is a finite set of nodes;

– EP ⊆ VP×VP is a finite set of edges, where (u, u′) denotes an edge from
u to u′;

– fpath
e is a function defined on EP s. t. for each (u, u′) in EP , fpath

e (u, u′)
is a fuzzy regular expression;

– f cond
n is a function defined on VP s. t. for each node u, f cond

n (u) is a
condition on attributes of u, defined as a combination of atomic formulas of
the form A is Fterm, where A denotes an attribute and Fterm denotes a fuzzy
term (e.g. year is recent).
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– f cond
e is the counterpart of f cond

n for edges. For each (u, u′) in EP for
which fpath

e (u, u′) is simple, f cond
e is the condition on attributes of (u, u′);

and

– f type
n is a function defined on VP s. t. for each node u, f type

n (u) is the type
of u.

In the following, we adopt a Cypher syntax for graph pattern representation.

EXAMPLE 6.9.– We denote by P the fuzzy graph pattern below.

1 MATCH
2 (ar1:Article)-[part_of.series]->(s1),

3 (ar2:Article)-[part_of.series]->(s2),

4 (ar1)-[ : creator]->(au1:Author),

5 (ar2)-[ : creator]->(au1:Author),

6 (au1)-[ (contributor+) | Length IS short]->(au2:Author)

7 WHERE s1.id=WWW AND s2.id=Pods AND ar2.year is recent.

Query 6.9. Pattern expressed in Cypher

Figure 6.13 is a graphical representation of pattern P , where the dashed
edge denotes a path and the information in italic font denotes a node
type or an additional condition on node or edge attributes. This pattern
“models” information concerning authors (au2) who have, among their close
contributors, an author (au1) who published a paper (ar1) in WWW as well as
(ar2) in Pods recently (ar2.year is recent). �

Author

Author

Article Article

where year is recent

id=WWW id=Pods

( +)

Figure 6.13. Pattern P
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DEFINITION 6.6 (Fuzzy graph pattern matching).– A fuzzy data graph
G = (V,R, κ, ζ) matches a fuzzy graph pattern P = (VP , EP , f

path
e , f cond

n ,
f cond
e , f type

n ) with a satisfaction degree denoted by μP(G) if there exists a
binary relation S ⊆ VP × V representing an injective function from VP to V
such that (1) for each node u ∈ VP , there exists a node v ∈ V s. t. (u, v) ∈ S;
(2) for each edge (u, u′) ∈ EP , there exist two nodes v and v′ of V s. t.
{(u, v), (u′, v′)} ⊆ S and there is a path p in G from v to v′ s. t. p matches
fpath
e (u, u′) (we recall that in the case of matching, a satisfaction degree is

associated, see Definition 6.4); (3) for each pair (u, v) ∈ S, κ(v) � f cond
n (u)

(the semantics of � is clear from the context here) and f type
n (u) = Type(v)

and (4) the same reasoning is trivially applied to conditions on attributes
for edges labeled with a simple fuzzy regular expression in EP , that is,
ζ(v, v′) � f cond

e (u, u′).

The value of μP(G) is the minimum of the satisfaction degrees produced
by the mappings and conditions from (2), (3) and (4). If there is no relation
S satisfying the previous conditions, then μP(G) = 0, that is, G does not
match P .

EXAMPLE 6.10.– Figure 6.14 gives the set of subgraphs of FDB matching
the pattern P of Example 6.9. We note for the following that μrecent(2011) =
0.25, μrecent(2013) = 0.75, p is the path going from au1 to au2. Let us now
consider the satisfaction degree associated with each graph of Figure 6.14. As
the satisfaction degree is the minimum of the satisfaction degrees induced by
Lines 5 and 8, we have:

– μP(g1) = 0.75 (as μshort(Length(p)) = μshort(1.72) = 1 and
μrecent(2013) = 0.75);

– μP(g2) = 0.5 (as μshort(Length(p)) = μshort(4) = 0.5 and
μrecent(2013) = 0.75);

– μP(g3) = 0.33, (as μshort(Length(p)) = μshort(4.33) = 0.33 and
μrecent(2013) = 0.75);

– μP(g4) = 0.75;

– μP(g5) = 0.5, (as μshort(Length(p)) = μshort(4) = 0.5 and
μrecent(2013) = 0.75);

– μP(g6) = 0.25 (as μshort(Length(p)) = μshort(1.72) = 1 and
μrecent(2011) = 0.25);

– μP(g7) = 0.25;
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– μP(g8) = 0.25; and

– μP(g9) = 0.4.�

Serge

Sophie

WWW_

VVT12

Pods_

TU13

WWW12 Pods13

WWW Pods

(g1)

creator creator

part_of part_of

series series

contributor
(0.58)

Serge

Eva

WWW_

VVT12

Pods_

TU13

WWW12 Pods13

WWW Pods

(g2)

creator creator

part_of part_of

series series

contributor
(0.25)
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Anna
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(0.3)
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WWW12 Pods13

WWW Pods
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Figure 6.14. Subgraphs of FDB matching P
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6.3.2.4. The FUDGE language

The FUDGE language [PIV 14] is an extension of the Cypher

language [NEO 13] that is used for querying graph databases in a crisp way

in the Neo4j graph DBMS [NEO 18].

Given a fuzzy graph database FDB, a selection query σP(DB) expressed

in the FUDGE language is composed of the following:

1) A list of DEFINE clauses for fuzzy term declarations. If a fuzzy

term fterm corresponds to a trapezoidal function with the four positions

(abscissa) A-a, A, B and B+b, then the clause has the form DEFINE fterm

as (A-a,A,B,B+b). If fterm is a decreasing function like the term short of

Figure 6.6, then the clause has the form DEFINEDESC fterm as (γ,δ) (there is

the corresponding DEFINEDESC clause for increasing functions, like the term

recent of Figure 6.7).

2) A MATCH clause of the form MATCH pattern WHERE conditions, where

pattern denotes a the fuzzy graph pattern P .

Query 6.10 is an example of a FUDGE query. The DEFINEDESC clause

defines the fuzzy term short of Figure 6.6, and the next clause defines

the fuzzy term recent. The pattern defined in Lines 4–10 is the one of

Example 6.9.

1 DEFINEDESC short AS (3,5)

2 DEFINEASC recent AS (2010,2014)

3 IN
4 MATCH
5 (ar1:Article)-[part_of]->()->[series]->(s1),

6 (ar2:Article)-[part_of]->()->[series]->(s2),

7 (ar1)-[ : creator]->(au1:Author),

8 (ar2)-[ : creator]->(au1:Author),

9 (au1)-[ (contributor+) | Length IS short]->(au2:Author)

10 WHERE s1.id=WWW AND s2.id=Pods AND ar2.year IS recent

Query 6.10. A FUDGE query

The FUDGE language is implemented in a system called SUGAR [PIV 16a],

whose implementation issues are discussed in section 6.4.

An extension of the FUDGE language with fuzzy quantifiers over the

structure of the fuzzy data graph was also proposed in [PIV 16b] but is not

presented here.
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6.4. Implementation challenges

Concerning the implementation issues, the following three main problems

arise: (1) the implementation of the fuzzy data model if fuzzy data are

considered; (2) the evaluation of queries extended by fuzzy preferences; and

(3) the scalability of the query evaluation, which are discussed below.

6.4.1. Modeling fuzzy databases

Existing graph database management systems make it possible to only

model crisp property graph databases, so the problem of modeling fuzzy
databases in such systems arises. In the case of the property graph model like

that considered in Neo4j, a set of properties (key–value pairs) can be bound

to a node or an edge. Properties usually denote embedded data and meta-data

associated with nodes or edges. A simple mechanism may then be used to

simulate fuzzy graph databases in this crisp property graph model: we only

have to attach to each edge of the property graph a supplementary arbitrary

property called fdegree carrying the degree value of the relation, supposing

that fdegree now becomes a reserved keyword of the system.

6.4.2. Evaluation of queries with fuzzy preferences

Concerning the evaluation of extended queries (queries with fuzzy

preferences introduced in section 6.3.1 and in section 6.3.2.3), two

architectures may be thought of. A first solution consists of implementing

a specific query evaluation engine inside the data management system.

Figure 6.15.(a) is an illustration of this architecture. The advantage of this

solution is that optimization techniques implemented directly in the query

engine should make the system very efficient for query processing. An

important downside is that the implementation effort is substantial, but the

strongest objection for this solution is that the evaluation of an extended query

in a distributed architecture would imply having an extended query evaluator

engine available for each distant engine, which is a very strong architectural

constraint.

An alternative, more realistic architecture consists of adding a software

layer over a standard and possibly distant classical Neo4j engine. This layer

is composed of the following two modules, which interact with a Neo4j crisp
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engine (see Figure 6.15): the Transcriptor module and the Score Calculator.

The former aims to translate a FUDGE query into a (crisp) Cypher query

retrieves all needed data. This query is then sent to the crisp Neo4j engine.

Then, the Score Calculator module extracts answers, calculates the satisfaction

degree associated with each answer returned by the crisp engine and ranks the

answers. Figure 6.15(b) is an illustration of this architecture.

Client (user)

Query Q with

Fuzzy Preferences

Specific Query

Evaluator Engine

Answers to Q
(with sat degrees)

Management System with Specific Engine

(a) Implementing a specific query evaluation engine

Client (user)

Query Q with

Fuzzy Preferences

Transcriptor

Cypher query

Classical Neo4j Cypher

Query Evaluation Engine

Neo4j answers

Score Calculator

Answers to Q
(with sat degrees)

Software Add-on

Crisp querying

(b) Adding a software layer

Figure 6.15. Possible architectures for evaluating
a query with fuzzy preferences

As an example, the SUGAR software, which implements the FUDGE

language, is based on the architecture of Figure 6.15(b). It is built from

the Neo4j REPL Console Rabbithole [RAB] supporting Cypher queries.

Figure 6.16 presents a screenshot of the GUI of SUGAR; this GUI is an

extension of the Rabbithole one. It is composed of (1) a frame for visualizing

the graph database and the results of a query; and (2) an input field frame

for entering and executing a FUDGE query. SUGAR also provides logs that
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trace the evaluation in an associated console, providing each intermediate

result of the execution process: the crisp Cypher query obtained after the

transcription stage (output of the Transcriptor module), the result of the crisp

query evaluation (an intermediate result containing additional information

needed for the score calculation) and the final result obtained after the score

calculation (output of the Score Calculator module). The logs also provide

the execution time associated with each stage of the evaluation. Figure 6.17

is an excerpt of execution logs associated with an evaluation of the FUDGE

query from Query 6.10. An interesting observation concerns the conciseness
of the FUDGE language. Indeed, the crisp Cypher query obtained after the

transcription stage is very complex with respect to the FUDGE one.

Figure 6.16. Screenshot of the SUGAR system. For a color version of
this figure, see www.iste.co.uk/pivert/nosql.zip

6.4.3. Scalability

In [PIV 15], the authors discussed the cost of introducing flexibility in

graph pattern queries. They showed that the first and third stages, which allow

us to introduce flexibility in the query language in the SUGAR software based

on the architecture of Figure 6.15(b), are strongly dominated in complexity by

the crisp evaluation (the second stage). Therefore, introducing the flexibility as

defined in the FUDGE language (see section 6.3) seems reasonable in terms of

additional evaluation cost.
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Figure 6.17. Execution trace in the SUGAR system

However, dealing with very large databases and complex queries requires

that architectures be scalable. This may, for instance, rely on the current In-

Memory architectures, as described in [CAS 17]. Such architectures rely on

Graph processing systems, the most popular ones being used are GraphX,

Giraph and GraphLab. These systems are based on ideas expressed in the

Google Pregel paper [MAL 10] and on Map/Reduce concepts [DEA 08,

GHE 03]. In [CAS 17], the authors showed how to exploit NoSQL Graph

Databases and In-Memory architectures to extract summaries. The approach

presented in [CAS 17] has been tested on databases with up to 36 million nodes

and 73 million relationships.
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6.5. Related work

As several models have been proposed to represent data having an implicit

or explicit graph structure (see [ANG 08] for an overview of these models),

the literature includes a variety of query languages for graphs. The authors

of [ANG 08], [WOO 12] and [BAR 13] proposed complementary surveys of

graph query languages defined in the past 25 years, including languages for

querying graph-based object databases, semistructured data, social networks

and Semantic Web data. The authors of [BAR 13] focused on theoretical

query languages for graph databases and emphasized that graph database

management systems still lack query languages with a clear syntax and

semantics. This is the problem that we addressed here.

Functionalities that should be offered by a language for querying the

topology of a crisp graph database are exhibited in [ANG 05, ANG 12, CIG 12,

ANG 13, WOO 12]. We summarize these (non-exclusive) functionalities

hereafter, focusing on selection statements of the DML part of the language.

Given a graph data G, Adjacency queries test node adjacency, for example,

check whether two nodes are adjacent, list all neighbors of a node; given

a vertex, Reachability queries search for topologically related vertices in G,

where vertices are reachable by a fixed-length path, a regular simple path or

a shortest path; Pattern matching queries look for all subgraphs of G that are

isomorphic to a given graph pattern and Data queries specify conditions on

the data embedded in G. The framework that we proposed expresses some

flexible adjacency, reachability (as a rooted path is a special case of graph

pattern), pattern matching and data queries on fuzzy and crisp graph databases.

As a satisfaction degree is attached to each answer, rank-ordering them is

straightforward.

Concerning flexible querying, [YAG 13] discusses different types of fuzzy

preference criteria that appear relevant in the context of graph databases,

without going into detail regarding how to express them using a formal query

language. There are three main approaches allowing for a flexible querying

of graph databases: (1) keyword-based query approaches that completely

ignore the data schema (see, e.g. [HE 07]), which lack expressiveness for

most querying use cases [MAN 09]; (2) approaches that, given a “crisp” query,

propose approximate answers, for instance, through the implementation of a

query relaxation or an approximate matching mechanism (see, e.g. [KAN 01,

BUC 08] or [MAN 09]); and (3) approaches allowing the user to introduce
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flexibility when formulating the query. The approach we propose belongs to

this latter family, for which many contributions concern the flexible extension

of XPath [DAM 07, CAM 09, ALM 11] for querying semistructured data

(data trees). Such navigational languages behave well for querying graph

databases [LIB 13], but no flexible extension was proposed in this specific

case.

The literature about preference queries to graph databases is not as

abundant, since this issue has only recently started to attract attention. Flexible

extensions for querying RDF data are the closest work. Some extensions have

been proposed in the literature (see [PIV 16c] for a survey). To the best of our

knowledge, the expression of fuzzy preferences involving both value-based

and structural aspects over fuzzy RDF graphs was addressed only in [PIV 16b],

where the authors present this contribution as being an adaptation of the work

presented in this chapter.

6.6. Conclusion and perspectives

In this chapter, we presented a framework that makes it possible to

introduce fuzzy preferences in graph pattern queries addressed to a crisp

or fuzzy graph database. We discussed implementation issues for the

implementation of such a framework. A proof of concept, which extends the

Cypher query language of the Neo4j graph database management system,

supports the theoretical contribution.

The presented work opens a lot of research perspectives. Some of them

obviously concern increasing the expressivity of the query language by

considering more complex preferences. For instance, some features very useful

for structural network analysis could be offered. Interesting ones based on

ordering and counting capabilities concern the distance as well as the indegree,

outdegree or centrality of nodes. Other types of fuzzy quantified statements

could also be considered.

Another extension of this work concerns the application of fuzzy

preferences to the management of data quality in graph databases. In [RIG 17],

the authors proposed a framework that makes it possible to take quality

information embedded in a graph database into account, at query time.

However, no fuzzy preference is considered in this work, which could be

extended in this way.
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7

Relevant Filtering in a Distributed
Content-based Publish/Subscribe System

7.1. Introduction

Sources of information have been multiplying on the Web for several

years, especially due to the success of news portals and social networks that

produce information in real time. These flows of information can be kept and

processed, often in RSS [RSS 03] and Atom [GRE 07] formats. However, it

turns out that nowadays the amount of data which has to be analyzed daily is

so large [HME 11] that a user may miss information of interest. Thus, a given

user can be lost with so many sources and the frequency of updates [TRA 14].

Pub/Sub (Publish/Subscribe) systems (Redis [CAR 13], Scribe [ROW 01],

Siena [CAR 01], Echo [EIS 00]) have been designed to face the problem of

aggregating and delivering information of interest (bookmarks and topics) to

end users.

For these reasons, we advocate a content-based Publish/Subscribe

paradigm for Web 2.0 syndication in which information consumers are

decoupled (in both space and time) from feeds (produced flows of

items) and instead express their interest with keyword-based subscriptions,

which are computed using content-based filtering. However, even if

information is filtered through the matching process, users remain flooded

by notifications [HME 11]. Some propositions enhance the filtering process

by removing redundant information (i.e. Novelty [ZHA 02, CLA 08]) and/or

Chapter written by Cédric DU MOUZA and Nicolas TRAVERS.

NoSQL Data Models: Trends and Challenges, First Edition. Edited by Olivier Pivert. 
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by taking into account information diversification of the delivered items

(i.e. Diversity [DRO 09b, DRO 09a, PRI 08]), which is generally presented

as a top-k issue. However, the Pub/Sub context discards traditional top-k
approaches due to real-time notifications and the time constraint that cannot

remove a notified item from the past.

Very few works have been proposed to take into consideration both

relevance, novelty and diversity in a real-time Pub/Sub context. Our Pub/Sub

system FiND [HME 15] addresses this with a two-step process: matching and

filtering. For matching keyword-based subscriptions, we assume the existence

of an index [HME 12]. The second step is the core of this chapter, and it aims

at computing items’ content already delivered to a user to filter new incoming

items. The difficulty for a real-time Pub/Sub system is evaluating novelty and

diversity on-the-fly for every incoming item.

This chapter focuses on the way to enhance the relevance of filtering and

to integrate such a process in two different implementations: a centric-based

version and a distributed version in a NoSQL environment. Our contributions

in this paper are:

– definitions for novelty and diversity in this particular context, along with

a proposal for a weighting score (Term Discrimination Values, TDV) adapted

to the characteristics of items and subscriptions;

– an efficient filtering algorithm for real-time Pub/Sub systems based

on novelty and diversity, which exploits redundancy between subscriptions’

history. Two optimized implementations are proposed in centralized and

distributed contexts;

– a validation which highlights the complementarity of novelty and

diversity both in centralized and NoSQL environments;

– enhancement of TDV [WIL 85] computation by proposing incremental

versions in a distributed environment.

The chapter is organized as follows. An overview on novelty and diversity

processes in Pub/Sub techniques is detailed in section 7.2. Then, we present

the data model (section 7.3) on which relevance in notifications is based and

developed in section 7.4 by introducing novelty and diversity. Two distinct

implementations are detailed in section 7.5 and compared in section 7.7.

Section 7.6 deals with TDV score updates. We conclude in section 7.8.
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7.2. Related work: novelty and diversity filtering

In Pub/Sub systems, users are often faced with an issue of notifications,

which tend to be flooded by information. To enhance the quality of filtering,

two properties of information were proposed: novelty and diversity. In

filtering by novelty, the objective is to discard an item whose information

has already been notified (truncate or a similar content). Diversity captures a

complementary kind of redundancy since it measures whether the information

contained in a given item is globally present in the set of recently notified items

or not. We present here how these two properties are used in the literature, first

on the Web and then in a Pub/Sub context.

When searching a document on the Web, we assume static and already

known documents. The objective is to present to users the k most

relevant and diverse documents matching a query. To achieve this, some

models are based on probabilities for diversity [ANG 11] or on graphs for

computing distance [DRO 12a]. Some of them propose to modify diversity

measures by focusing on non-common attributes between items based on

user-defined filters [YU 09], by defining a trade-off between similarity

and diversity [SMY 01], by integrating entities and sentiment in a Greedy
Max–Min algorithm [ABB 13], by defining time-based distances with a

Gaussian similarity [KEI 12] or by comparing an item with the compression of

all previous texts like the NCD distance [CAR 10]. Globally, these techniques

allow us to compute large texts in a static top-k evaluation but cannot adapt

to our context since we consider small items, which changes the relevance of

previous methods. Moreover, real-time delivery of information is an important

constraint that cannot be ignored.

Some approaches focus on continuous filtering, as in the Pub/Sub context,

combined with top-k techniques. They may be based on fixed-size windows in

order to guarantee the amount of items to keep in the system, like [DRO 12b],

which uses a dynamic index to quickly find whether an item is diverse or

not using a frequently updated snapshot of items; [GAB 04], which focuses

only on novelty with extracted entities from items; [MIN 11], which presents

an incremental approach for time-based diversification; or [PAN 12], which

extracts topics from items for a simple coverage distance. However, fixed-size

windows can hardly manage different notification rates for subscriptions. In

fact, low rates will keep very old items to filter out incoming items and high

rates will remove recent items, which should remove duplicates.



206 NoSQL Data Models

The closest approach to our solution, [DRO 09b] (detailed in section 7.5.1),

uses top-k windows to compute diversity in real-time delivery. It is based on

the interchange algorithm that notifies an item if exchanging that item with the

previous top-k levels up the diversity. However, this solution can deliver items

from previous windows if considered as non-diverse, or remove items from

the past for future filtering steps. Our experiments illustrate that this approach

tends to locally diversify information, but not over time. Moreover, keeping all

items will lead to scale-up issues.

7.3. A Publish/Subscribe data model

Our Pub/Sub data model relies on the fact that published items are mainly

text oriented. Hence, subscriptions are long lasting (continuous) queries under

the form of keyword-based subscriptions. Whenever a news item is published,

it gets evaluated against the set of subscriptions submitted to the system and,

for every matching subscription, the corresponding subscriber is notified.

7.3.1. Data model

The set of stored subscriptions is denoted by S and their total number by

|S|. Each subscription s ∈ S includes a set of distinct terms from a vocabulary

VS = {t1, ..., tn}. I = [I1, ...Im] denotes the feed of incoming items. Items

I ∈ I are also formed by a set of terms (I ⊆ VI, with VI the vocabulary

of items). In this context, a match occurs if and only if all of the terms of a

subscription s are also present in a news item I (i.e. broad match semantics).

Subscription s1 s2 s3 s4
Terms t1 ∧ t2 ∧ t4 t1 ∧ t3 t1 ∧ t2 ∧ t5 t2 ∧ t4

Table 7.1. Example of keyword based subscriptions

Consider the set of subscriptions S illustrated in Table 7.1. Matching item

I = {t2, t4, t5} against S will result in the set of matched subscriptions

M = {s4} since t2 and t4 of s4 are contained in I . The matching process

has been fully developed in [HME 16] by proposing tree-based structures

to evaluate subscriptions. This paper goes one step further by enhancing

notifications by integrating a relevance feature.
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Processing textual content requires taking into account term weights

for items and subscriptions. However, traditional techniques in Information

Retrieval [BAE 99] cannot be adapted to our context. In the following sections,

we will develop the TDV weighting approach adapted to the Pub/Sub context,

which is more convenient for the filtering step.

7.3.2. Weighting terms in textual data flows

The partial matching process and filtering quality addressed by our system

must take into account a weighting of terms in order to compute scores.

In view of the foregoing, this weighting must be computed at low cost as

well as being relevant. Several term-weighting models are proposed in the

literature like the Term Frequency (TF – frequency of a term in a document)

combined with Inverse Documents Frequency (IDF – inverse frequency of a

term in all documents) [BAE 99], the Term Discrimination Value (TDV – see

below) [SAL 75] or the Term Precision (TP – number of relevant vs. non-

relevant terms) [BOO 74].

In the context of this work, we rely on the TDV weighting function,

which is more adapted to the quality of vocabularies in Web Syndications

Systems. In fact, an item is a short set of terms where term frequencies cannot

be used, so the tf/idf standard function is unsuitable (experimentally proved

in section 7.5.1). Moreover, the TDV weighting function measures how a

term helps to distinguish a set of documents (i.e. the term influence on the

global entropy). Therefore, for our subscriptions set, neither a very frequent

term (present in many subscriptions, so this term is not a selective filter for

subscriptions), nor a very uncommon term (present in very few subscriptions,

so assuming this is not a typo, it will probably never lead to a notification)

have an important TDV. Finally, the simplicity of computation is all the

more important, since we only have to compute a sum of weights for each

subscription (section 7.5.1.2).

DEFINITION 7.1 (TDV).– The discrimination value for a term tk is the
difference between the vector space density of the occurrence matrix with tk
and the density of the matrix without tk. Therefore, assuming a similarity
distance sim(I1, I2) between items, like, for instance, the cosine of the
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Euclidian distance, we compute the density as the average pairwise similarity
between distinct items:

Δ(I) = 1

|I| × (|I| − 1)

|I|∑

i=1

|I|∑

j=1∧j �=i

sim(Ii, Ij)

Finally, the TDV for a term tk is:

tdv(I, tk) = Δ(I − {tk})−Δ(I)

For the sake of simplicity, we denote the TDV for the term tk tdv(tk)
instead of tdv(I, tk). Based on this function, we can weigh the different terms

of items and subscriptions. Each term weight wi is the TDV tdv(i) normalized

by the sum of TDV of the query terms.

Of course, computing and updating the TDV is a real time-consuming

process but it can be done in parallel with the filtering process. For clarity

purpose, we focus now on the way to integrate TDV in novelty and diversity

computation and then detail in section 7.6 the way to optimize TDV updates

incrementally in a NoSQL environment.

7.4. Publish/Subscribe relevance

In top-k approaches, notified items are computed on the whole set of items,

leading to delays of item delivery. In our approach, we consider the set of

notified items for a given subscription, the so-called subscription history, and

we use this history to filter out in real time the incoming item just after

the matching process. This section presents our approach and the definitions

adopted, and the instantiation is presented in section 7.5.

7.4.1. Items and histories

In our context, we define an item as a set of terms. Each term is associated

with a term weight denoted by wi, which is used to compute distances and

similarities. To compute novelty and diversity, a Pub/Sub system must keep

already notified items, also called subscription history H . Each one is a

time-ordered set of items linked to a subscription. Each time an item is notified

for a subscription, it is added to its history.
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7.4.2. Novelty

The objective when filtering by novelty is to discard an item that does not

contain new information with respect to items in the subscription history, i.e.

an item I with a truncate or a similar content of a previous item I ′. Since, in

our context, history is time dependent, the measure of novelty new(I, I’) should

be asymmetric [ZHA 02] to test how new an incoming item is w.r.t. an existing

one and not conversely. Finally, we define the novelty of an incoming item I
with respect to an existing history H by comparing I with all items in H , one

by one.

DEFINITION 7.2 (Novelty item-history).– Given a history of items H , an
item I and a novelty item–item measure new (like the one proposed by
Definition 7.4), I is said to be new with respect to H iff:

∀I ′ ∈ H, new(I, I ′) ≥ α

We assume that the novelty threshold α is a parameter fixed for the user

for his subscription according to the defined or required output rate of items.

section 7.7 will show an impact on the filtering rate and quality, histories and

performances in our system.

7.4.3. Diversity

Diversity captures a complementary kind of redundancy (towards novelty)

since it measures whether the information contained in a given item is globally

present in the set of notified items or not (segmented information). The

objective is to detect whether an incoming item conveys new information

regarding the subscription’s history of notified items. The user’s objective is

to receive only the interesting items with different information; the items are

filtered by their content. The degree of diversity of an item for a user w.r.t.

its subscription history is measured as the amount of increase in the average

pairwise distance dist(I,I’) between the history’s items [DRO 09a]. It can be

observed that, to keep D(H) and D(H ′) (with I) comparable, we must remove

from H an old item Io before adding I . To satisfy diversity, criteria I must be

on average more distant from all items in H than at least one of the items

in H . We decided to choose Io as the oldest item in H assuming that Io
is more likely to be the most distant item since its information is older and

deprecated. Focusing on only one item of the history allows us to avoid the

quadratic complexity and scale up the system.
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DEFINITION 7.3 (Diversity of items).– Assume a history of items H , where
D(H) is the average pairwise distance between its items. An item I improves
the diversity of H (Io the oldest item of H) if and only if:

D(H ∪ {I} − {Io}) > D(H)

D(H) =
1

|H| ∗ (|H| − 1)

∑

I∈H

∑

(I′∈H∧I′ �=I)

dist(I, I ′)

The two average distances must be comparable and so the number of items

in histories must be identical. Otherwise, if we compare H to H ∪ I , the new

item I must be far more distant from the items in H to make it more diverse

than in our proposition. It justifies our choice to interchange I with Io, the more

likely distant item since the difference of time makes information naturally

more distant.

7.4.4. An overview of the filtering process

To resume our time-dependent filtering process, an incoming item I that

matches a subscription must verify novelty and diversity with the subscription

history H . First, the novelty of I is checked with H and, if at least one

similarity is below the threshold α, it is discarded for H . Second, the diversity

of H is compared with the diversity of H ∪ I − Io. If I increases the average

distance, then it is notified and added to H .

A subscription is said to be satisfied by an item only if either the matching

or filtering process is validated. For the matching process, it means that all

subscriptions’ terms are contained in the item. According to the filtering

process, the item passes through both novelty and diversity.

7.4.5. Choices of relevance

7.4.5.1. Novelty

Novelty checks if information from I has already been delivered. For

example, if I ′ contains I and appends additional information, then I is not

new compared with I ′, but I ′ is new compared with I . Therefore, symmetric

measures like the Jaccard measure are unsuitable. Consequently, we adopt the

following measure, inspired by Newsjunkie [GAB 04], for the novelty of an

item compared with another one.
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DEFINITION 7.4 (Novelty item-item).– Let α be a threshold of novelty, α ∈
[0, 1], and I and I ′ two items. I is said to be new compared with I ′ if and only
if:

new(I, I ′) =

∑
t∈(I\I∩I′) tdv(t)∑

t∈I tdv(t)
≥ α

This measure computes the weighted coverage of terms from I without

taking into account the terms present in I ′ w.r.t the sum of weights of terms

only present in I . Note that we chose the tdv value as the weight of terms

according to the above discussion.

7.4.5.2. Similarity in diversity

To measure diversity, we need to compute the distance between items.

Several distance measures are proposed in the literature to compute diversity

on a set of documents. Most frequently used are Cosine [ZHA 02],

Euclidean [DRO 12a, PRI 08] and Jaccard [DRO 12b], but we can also

quote Pearson derived from Cosine, and Dice derived from Jaccard or

Levenstein. For short items, Euclidean is known to produce more relevant

results [BAV 10]. Thus, we consider in our system a diversity function based

on an Euclidean distance weighted by TDV.

7.4.5.3. Discussion for the choice of a distance function

The Jaccard measure computes the distance as the ratio between the

intersection and the union of the terms of two documents (here items).

However, it does not take into account the importance of item terms.

Conversely, the Cosine measure allows us to compute the distance between

two vectors of term weights: the similarity of two documents corresponds to

the correlation between the vectors (angle between the vectors). An important

property of the Cosine similarity is its independence of document size.

However, since our items are short as observed in [BAV 10], Cosine and

Jaccard are not appropriate. Therefore, we focus on Euclidean distance. Indeed

for the Euclidean distance, items are more distant if they have important

terms not in common. As for the Cosine metric, in order to make our score

independent of the items size, we normalized the Euclidean distance, as shown

in the following definition.
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DEFINITION 7.5 (Distance between two items).–

dist(I, I ′) =
√ ∑

t∈(I∪I′\I∩I′)
tdv2(t)

With the Euclidean distance, the contribution of a term which is shared by

two items is null since the difference in their TDV is 0. Therefore, we compute

only the terms not in common with the tdv2 value.

7.5. Real-time integration of novelty and diversity

We must recall that, in the Pub/Sub context, queries (subscriptions) are

stored to be evaluated on-the-fly. Therefore, all the optimization is done in

such a way as to process millions of queries on incoming items. One of the

main techniques is to factorize treatments since there is a high probability that

queries share the same operations.

7.5.1. Centralized implementation

In this section, we present our solution to quickly filter out items based on

novelty and diversity criteria. It also allows us to efficiently store and manage

items’ histories for all subscriptions.

7.5.1.1. Shared history

Since an item can belong to several histories, we need to avoid keeping all

items. A simple solution consists in storing the last N notified items [ZHA 02]

for each subscription and in factorizing histories by storing each item only

once. However, the publication rate strongly differs from one source to another

and this approach will impact the filtering quality. In fact, important items can

be removed too quickly (active sources) or a highly filtering item could never

disappear (rarely notified sources). We conclude that relevance of filtering will

be impacted by these item-based histories.

To optimize memory consumption, we adopt a shared history, which is

basically a time-based sliding window W that contains all items notified at
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least once during the last period. Subscription histories are stored as ordered

sets of pointers to related items in W . Figure 7.1 presents an example of a

sliding window W and two subscriptions S1 and S2 with their corresponding

histories and pointers to the shared history.

Figure 7.1. Example of a sliding window

7.5.1.2. Shared history filtering algorithm

Filtering by novelty and diversity with a large number of subscriptions

that share common items poses a real optimization challenge. Indeed, a naïve

algorithm, which checks first novelty, then diversity for an incoming item

with the histories of all the subscriptions it matches, has the following cost

(definitions 7.2 and 7.3):

Cfilter(I, S) =
∑

s∈S

∑

I′∈Hs

new(I, I ′) +
∑

s∈ρ(S)
D(Hs ∪ {In} − {Io})

where S corresponds to the set of subscriptions matched by the incoming item

I and ρ(S) represents the ratio of S for which I satisfied the novelty threshold.

Assume that term weights are computed and considered as constant such that

the average history size is NH items (number of computations per history)

and the average item size is SI (time for each computation is based on item

size). Since the cost depends on the number of computations per history and

the time for each computation is based on item size, the average complexity

for this algorithm is:

Cfilter(I, S) = O(|S|.NH .SI) +O(|ρ(S)|.(NH .SI)
2)

Experiments in Figure 7.6 show that the novelty has a filtering rate

proportional to the chosen threshold α. This results in |S| ∼ |ρ(S)| and in

a global quadratic complexity:

Cfilter(I, S) = O(|S|.(NH .SI)
2)
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To achieve web scaling, we propose to optimize the filtering algorithm by

factorizing computations for different subscriptions. As explained previously,

due to the quadratic complexity of the diversity computation, the novelty

must be first evaluated. However, browsing H several times for processing

similarities can be costly, especially as novelty does not filter enough (see

section 7.7.3.1). In order to avoid the scanning of history twice, both filters

are applied in one course. Algorithm 7.1 presents the processing with shared

histories and optimized computations for novelty and diversity.

Algorithm 7.1. Novelty and diversity filtering on a history

Require: An item I , a history H and α ∈ [0, 1] novelty threshold

1: sumH ← 0; sumI ← 0; Io ← H[0]; //oldest item

2: for all I’ ∈ H do

3: if I.getInfo(I’) = null then

4: N ← novelty(I ,I ′); d ← dist(I,I’); I.putInfo(I’,N,d);

5: else

6: N ← I.getInfo(I’).N; d ← I.getInfo(I’).d;

7: if N < α then

8: return;

9: else if I’ != Io then

10: I.sum ← I.sum + d;

11: if I.sum > Io.Sum then

12: for all I’ ∈ H do

13: I’.sum ← I’.sum+I.getInfo(I’).d

14: H ← H ∪ I;

15: Notify I;

The algorithm processes each item I ′ in H . Since I must be compared with

I ′ each time it appears in a history, we compute new(I, I ′) and dist(I, I ′)
only once to benefit from (I, I ′) co-occurrences. Thus, we check if this value

has already been computed for another subscription. If not, we compute and

register it (line 4), otherwise we just retrieve the stored value (line 6). If I
is not new, the algorithm stops (line 8–9). Remember that diversity requires

the computation of the average pairwise distance between items of H and,
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due to this quadratic complexity, we evaluate novelty first. Then, we cumulate

the distance (I, I ′) with others from H only if it is not the oldest item Io
(line 10–11). Second, as explained above, the diversity computation can be

simplified to the comparison between the sum of distances from Io and

I (line 14). In that case, sums of distances are updated (line 15–16), I is added

to the history and notified (line 18–19).

To summarize, our algorithm integrates two main optimizations. The first

one exploits the high probability of computing several times the similarity

and distance for each pair of items (I, I ′). Further computations of pairs are

constant and not dependent on item size. These values are stored during the

filtering process of I and deleted when there is no more subscription to check.

The gain depends on the co-occurrence ratio σ ∈ [0, 1] of items in subscription

histories, defined by the number of co-occurrences of item pairs checked

during the filtering step on the total number of pairs required:

σ = 1− #cooccurrences

#pairs

The second optimization deals with the computation of the density, which

changes for each notified item. To avoid the quadratic complexity of computing

the sum of pairwise distances in H , we propose to store computed sums

of distances I.sum for each item of the history H with all items received

later. Then the density of H is the sum of I.sum. Since the oldest items are

removed with their stored values, no other update has to be done for remaining

items. Furthermore, the distance computations also benefit from the “σ”

co-occurrence gain. Formally, I.sum is a stored value equal to:

I.sum =
∑

(I′∈H∧I′.τ>I.τ)

dist(I, I ′)

Since diversity is the comparison between D(H ′) and D(H) with

H ′ = H ∪ {In} − {Io}, the result is that checking whether an incoming item

increases the diversity or not may be simplified as follows:

2×∑
I′∈H′ I ′.sum

|H ′| × (|H ′| − 1)
>

2×∑
I′∈H I ′.sum

|H| × (|H| − 1)

|H| = |H ′| ⇒
∑

Ik∈H′
Ik.sum >

∑

Ik∈H
Ik.sum
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H ′ = H ∪{In}−{Io} ⇒
∑

Ik∈H
Ik.sum+I.Sum−Io.Sum >

∑

Ik∈H
Ik.sum

Therefore, the diversity test consists in checking if:

I.sum > Io.sum

To conclude, the complexity of our algorithm benefits from the

co-occurrence between items for novelty and diversity, which results in the

following linear complexity.

LEMMA 7.1 (Shared-history complexity).– Algorithm 7.1 has a linear
complexity w.r.t. the number of subscriptions matched by one item, the average
history and the item size.

PROOF.– Assume that σ denotes the average co-occurrence ratio between

items, |S| the number of subscriptions matched by the incoming item, NH the

average history size and SI the average item size. Then with the shared-history

management, the filtering cost given by Algorithm 7.1 is:

Cfilter(I, S) = Cnov(I, S) + Cdiv(I, ρ(S))

= O(|S|.σ.NH .SI) +O(α|S|.σ.NH .SI) = O(|S|.NH .SI) �

The complexity of computing D(H) and D(H ∪ I) is about O(|H|), while

the complexity of computing the average pairwise distance between items of

H is about O(|H|2). This optimization in computing the density reduces the

processing time.

7.5.2. Distributed filtering

To complete our work on Pub/Sub systems, we try to compare our

centralized implementation with a distributed version. To achieve this, we

propose integration in the MongoDB NoSQL database, in which we must

adapt our data model and the way to distribute the computation of Novelty

and Diversity. MongoDB seems to be more adapted to this context since

we need: 1) some flexibility with a document-oriented model, 2) control

over where to place data in the cluster and 3) to guarantee the consistency
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for proper filtering scores. Moreover, the implementation complexity of the

similarity functions discards some other document-oriented NoSQL databases

(Cassandra, DynamoDB, CouchBase).

First, we need to define a physical data model that takes into account the

correlation between items and subscriptions in order to compute novelty and

diversity. There are two possibilities: subscription-based (histories of items)

and item-based (list of notified subscriptions).

7.5.2.1. Subscription-based model

The subscription-based model nests for each subscription all the history

of items in a single document, as shown in Listing 7.1. The advantage

is the accessibility to all items and a pre-computed sum of distances,

and a simplification of the design of the distributed computation with the

Map/Reduce functions since it corresponds to Algorithms 7.1 without the

shared history. For an incoming item, 1) all subscriptions are queried (Map
function), 2) novelty and diversity are evaluated and then 3) every notification

leads to an update (append and remove) on the corresponding history and sum

of distances (Reduce function). The interesting point of this algorithm is the

distribution of the computation according to the number of subscriptions.

1 {"subID":1024, "terms":[{"tID":103, "tdv":0.073}, {"tID":1710, "tdv":0.090}],

2 "history": [

3 {"itemID":8, "sumDist":0.11,"time":21345, "terms":[{"tID":23,"tdv":0.005},"..." ]},

4 {"itemID":12,"sumDist":0, "time":45678, "terms":[{"tID":12,"tdv":0.068},"..." ]}

5 ]}

6 {"subID":1260, "terms":[{"tID":101, "tdv":0.071}, {"tID":1514, "tdv":0.086}],

7 "history": [

8 {"itemID":5, "sumDist":0.20,"time":12345, "terms":[{"tID":15,"tdv":0.025},"..." ]},

9 {"itemID":9, "sumDist":0.12,"time":34567, "terms":[{"tID":12,"tdv":0.068},"..." ]}

10 {"itemID":12,"sumDist":0, "time":45678, "terms":[{"tID":12,"tdv":0.068},"..." ]}

11 ]}

Listing 7.1. Subscription-based model

However, items are highly redundant in the repository since one item

is stored in every linked subscription history. This has a strong impact

on the repository size and efficiency. It is worth noticing that updating

documents, have a huge impact on efficiency in MongoDB. In fact, document

growth requires reallocating blocks of data in the repository, which is a very

costly process in a database (traditionally tackled with a PCTFREE). Our

experiments will explore this point of view.
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7.5.2.2. Item-based model
In the item-based model, each item is stored only once in the repository

with all linked subscriptions that are nested (Figure 7.2). The advantage of this

method is to maximize the evaluation of novelty and the distance for diversity

since it is done only once for each pair of items.

Since updating stored items is an issue in NoSQL databases, we need

to store an item once, and remove it when getting out of the time window.

Consequently, we need to compute the sum of pairwise distances between

items in the same history. Contrary to “I.sum” in the centralized system

(Algorithm 7.1), the sum of distances as designed in Algorithm 7.1 must be

set in preceding order (to avoid updates). Thus, each distance with preceding

items is stored in the current item according to the corresponding subscription.

For this, “distItems” stores for each itemID (the key) the distance with the local

item (value), and this will help to recompute diversity of Io versus I .

Listing 7.2 shows four items chronologically stored with nested

subscriptions. We can see that subscription 1024 (resp. 1260) has notified

items 8 and 12 (resp. 5, 9 and 12). Each item distance is stored with preceding

stored items (e.g. in item 12, subscription 1260 has two distances with items

5 and 9). This method is more complex depending on the way to distribute

the notification process. Algorithms 7.2 and 7.3 illustrate the Map/Reduce

implementation of the distributed process. The Map function compares an

incoming item with each stored one and emits for each corresponding

subscription (in the history) information useful in the Reduce function. The

latter reconstructs the spread history and checks the novelty.

Algorithm 7.2. Map Function of the item-based model

Require: A stored item Is, an incoming item In

1: if Is.time < window_time then return;

2: N ← novelty(Is.terms, In.terms) ; D ← dist(Is.terms, In.terms)

3: for all nested subscriptions s do

4: if match (In.terms, s.terms) then

5: if N < α then emit(s.subID, {"new": false})

6: else emit(s.subID, {"new":true, "ID":Is.itemID, "dist":D,

"distItems":s.distItems, "time":d.time}) end if
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Algorithm 7.3. Reduce Function of the item-based model

Require: List of grouped items l (for a subscription)

1: sum ← 0; sumo ← 0; oldest ← l[0]

2: for all status s in l do

3: if s.new == false then return null end if

4: if oldest.time > s.time then oldest ← s end if

5: for all status s in l − oldest do

6: sum ← sum + s.dist ; sumo ← sumo + s.distItems[s.ID]

7: if sum > sumo then return l end if

1 {"itemID":5, "time":12345, "terms":[{"tID":12, "tdv":0.068}, "..." ] ,

2 "subscriptions" : [

3 {"subID":1260, "terms":["..." ] , "distItems":{}},

4 {"subID":1411, "terms":["..." ] , "distItems":{"3":0.310}}

5 ]}

6 {"itemID":8, "time":23456, "terms":[{"tID":23, "tdv":0.005}, "..." ] ,

7 "subscriptions" : [

8 {"subID":1024, "terms":["..." ] , "distItems":{}},

9 ]}

10 {"itemID":9, "time":34567, "terms":[{"tID":15, "tdv":0.025}, "..." ] ,

11 "subscriptions" : [

12 {"subID":1260, "terms":["..." ] , "distItems":{"5":0.553}},

13 {"subID":1411, "terms":["..." ] , "distItems":{"5":0.610}}

14 ]}

15 {"itemID":12, "time":45678, "terms":[{"tID":12, "tdv":0.068}, "..." ] ,

16 "subscriptions" : [

17 {"subID":1024, "terms":["..." ] , "distItems":{"8":0.441}},

18 {"subID":1260, "terms":["..." ] , "distItems":{"9":0.703, "5": 0. 503}},

19 {"subID":1536, "terms":["..." ] , "distItems":{}}

20 ]}

Listing 7.2. Item-based model

The Map function (Algorithm 7.2) first checks if the stored item Is remains

in the time window (correct timestamp, line 1). Then it computes novelty and

distance between Is and the incoming item In (line 2). Then, for each nested

subscription s, it checks the matching process (embedded terms, line 4). If

the novelty N is lower than the threshold (line 5), it emits a false status to

the Reduce function (the grouping key is the subscription ID) in order to

avoid a notification; In can be new for other Is and given to the Reduce

function anyway. Finally, the distance D and the sum of distances distItems
are emitted (line 6) to compute novelty in the Reduce function.
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The Reduce function (Algorithm 7.3) requires the recomposition of the

subscriptions (grouping key “subID”). If a group occurs on a subscription ID,

it means that at least one match occurred in the Map function step. Then we

must check whether at least one novelty is false (line 3) and get the oldest item

(line 4). Then compute the sums of distances for I and Io (line 7). If the sum

of distance levels up the diversity (line 9), the list of distances is returned to

notify the item and store the item in the repository.

7.5.2.3. Distributing strategies

To make a choice between these two strategies, we must take into account

the distribution process. It relies on a horizontal scaling of the database, where

data are distributed across multiple shards (servers). The goal is to optimize

distribution of computations and avoid network communications between the

Map and Reduce functions (called shuffle).

The subscription-based strategy queries the subscriptions to check novelty

and diversity in the Map. If an item is notified, it must be added to histories, and

all other items must be updated (sumDist). The updated version is computed

during the Reduce, but locally, if we distribute documents according to the

subscription ID.

For the item-based strategy, the Map phase is applied on items and it

benefits from the co-occurrence of items in subscription histories. Therefore,

novelty and diversity distances are computed once. The Reduce phase

aggregates histories for each matching subscription. The result provides the

new item to insert. It generates more communications between shards when

aggregating in the shuffle phase. However, we can enhance this by distributing

documents according to the first subscription ID, which is sorted on the number

of correlated items (more likely to group more items).

Naturally, the item-based strategy brings better performances especially

when highly distributed. Avoiding document updates and factorizing the

novelty and diversity in the Map phase decrease drastically the computation but

the shuffle phase consumes the bandwidth for large numbers of subscriptions

(number of aggregates). The experiments will confirm our conclusions (see

section 7.7.5).
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7.6. TDV updates

As discussed in section 7.3.2, TDV computation is a very time-consuming

process. We need to extract similarities between all pairs of items in a

collection for N times: one without all the terms, and N times by removing a

term to compute the density of this term. Consequently, this process cannot be

done in real time and must be evaluated in parallel with the filtering process.

Initially, it took two days to compute 10M items. Even if a TDV does not

evolve much over time, it relies on the evolution of the presence of a term

compared with all of them, on all items. The computation step needs to start

from the beginning each time we need to provide new TDV.

Our work to enhance the computation of TDV updates is twofold:

i) adapt TDV computation techniques in an incremental process and ii) adapt

our algorithm in a distributed context in order to scale up.

7.6.1. TDV computation techniques

TDV computation is a heavy process that requires evaluation of the density

of a collection of items. It computes similarities between all pairs of items.

Basically, to provide a TDV for a given term, densities must be computed

twice, first with all the terms and second without the given term. Thus, the TDV

must be computed for every term of the collection. We study, in this section,

how to provide better solutions to compute TDV. In the literature, three main

approaches are proposed. For conciseness, we only present the main ideas and

comparisons between those techniques instead of giving precise algorithms,

which can be found in [LAL 15].

7.6.1.1. Naive approach

[WIL 85] explains the natural way of computing the TDV of a term ti. We

need to extract two densities: the first one sums the similarities of all pairs

of documents in the collection, while the second one computes this density

after removing ti from all documents. The TDV is the difference between

two densities, with and without the given term. The TDV Δ(I) represents

the relationship between documents I .

The complexity of the algorithm is highly dependent on the number of

terms N and the number of documents M : 2M2N2 + 2M2N .
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7.6.1.2. Centroid method

Then, [WIL 85] proposes a simplified method by creating a centroid

of the documents in the collection. This center of gravity is denoted by

G = (G1, ..., Gk, ...GN ), where Gk with wik (the weight of term k in the

in document) is defined by:

Gk =

∑M
i=1wik

M

For each term, this centroid provides the average occurrence. Then the TDV

of a single term is computed by the similarity between each document and the

centroid instead of each document of the collection. The complexity is then:

2MN2 + 3MN . We can notice that we save the combination between each

pair of documents, but the TDV remains dependent on similarity computations

between documents and the centroid.

7.6.1.3. Cluster concept covering Method (C3M)

Another approach [CAN 90] proposes to compute TDV with a clustering

method. C3M algorithms place two documents in the same cluster if they are

likely to answer the same query. The algorithm chooses a number of clusters

by creating the probabilities to select the correlation between a term and an

item.

The probabilities are computed by three main components, namely α, β and

δ. Consider a matrix of term weights wij in all documents, where i is the term

and j is the document. We compute αi as the sum of weights for each term and

βj the weights for each document. Then, we produce a matrix of document

term correlations N ×N . Each cell is the probability deltaik that shows how

much the couple (i, k) is similar. This similarity is given by coupling weights

and normalizing with the sum of weights α and β:

αi =
1

∑N
i=1wi

βj =
1

∑M
j=1wj

δik = αi ×
N∑

l=1

wil × wkl × βl

An interesting property is extracted from the diagonal of this matrix. In fact,

δkk is the coupling similarity between a document and itself, and it therefore

shows how much a document k is dissimilar from others.

Thus, the number of clusters C is the sum of the diagonal probabilities δkk.

The relationship is: the more the clusters, the more the dissimilar documents.
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The TDV is then the difference between the number of clusters C with term ti
and the number of clusters Ci without term ti. The main idea is that the number

of clusters is inversely proportional to the density of a collection. Therefore,

the number of clusters and TDV are given by the following formulas:

C =
M∑

k=1

δkk tdv(i) = C − Ci

The production of TDV is then extremely simplified, and thus, the

complexity is reduced to: MN2 + 3MN . Even if we earn comparisons

between terms of documents, we must notice that this clustering method

provides approximate results. In fact, this solution focuses only on documents

in the same cluster, and not all the documents.

7.6.1.4. Comparison of approaches
The different complexities are resumed in the first column of Table 7.2,

where N is the number of terms and M the number of items. We can notice

that every technique is characterized by the correlation between documents

and similarities between them (MN2), even if the optimized techniques try to

reduce this step. Specific gains are found in the following step by combining

the matrices or resuming the contents of documents, which leads to the

reduction of the second step.

Static Approach Incremental Approach
Naive method 2M2N2 + 2M2N 2MN2 + 2MN

Centroid method 2MN2 + 3MN 2MN2 + 2MN +N

Clustering method MN2 + 3MN 2MN2 +MN + 2N

Table 7.2. Complexities of the different methods

7.6.2. Incremental approach

The above-mentioned techniques are dedicated to computing a whole

static collection of documents. However, to follow its evolution in our highly

dynamic context, we need to study an incremental way to compute TDV.

To achieve this, we extract the minimum information to compute for a new

incoming item (or set of items). In order to keep a constant size for the

collection, we remove the oldest item for each add-on.
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In the preceding techniques, each new item Inew leads to:

– The naive method which requires the computation of the similarities

of the incoming items with the whole collection and deduces it with the old

computed density:

Δnew = Δold +
M∑

i=1

sim(di, Inew)

with a complexity of 2MN2 + 2MN , the first scan of the collection M being

saved.

– The centroid method which must update every changing term of Inew
in centroid cnew. Then we compute the similarity of each document with cnew:

Δnew =

M∑

i=1

sim(di, cnew)

with a complexity of 2MN2 + 2MN +N ; a small gain is obtained since the

centroid must be updated and recomputed.

– The clustering method which requires the recomputation of the

number of clusters on each dimension, thus it must update probabilities. Those

updates require an update of each probability in the matrix, focused on the

incoming item, and then a recomputation of the number of clusters. This

leads to a complexity of 2MN2 +MN + 2N , where updates cost more than

computing the whole collection from the beginning.

7.6.2.1. Comparison

All the complexities from the four techniques in static and incremental

approaches are resumed in Table 7.2. It summarizes in the first column the

complexity of the TDV computation for all terms of a vocabulary, and second,

its computation in an incremental way. We must notice that even if each

dimension is huge, the number of items M remains the most critical one (it

can be more than 100 times larger).

The naive method complexity is caused by density computation, which

must be done N+1 times, whereas the centroid one is done with a unique vector.

According to the clustering method, time is spent to compute the matrix once,

and then three computations are done on this matrix. By taking into account

the fact that the vocabulary evolves far less than the number of items, we can

conclude that the naive method is not realistic. However, two others remain

extremely time consuming.
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7.6.3. TDV in a distributed environment

The last step of TDV update enhancement is the integration of those

algorithms in a NoSQL database. Since the calculation of TDVs is very

computational, we need to distribute it in a distributed environment in order

to scale it up. To achieve this, we need to model each needed structure in

the incremental approaches. First, data structures must be defined, and then

algorithms developed in Map/Reduce functions.

Documents in the collection are very simple JSON documents in which

term identifier tID and initial weights w are given:

1 {"docID":1, "terms":[{"tID":0,"w": 0. 33},{"tID":5, "w": 0. 33},

2 {"tID":12,"w": 0. 33}]}

Adapting these algorithms requires computing several steps of parameters,

matrices and constants. Moreover, in a distributed environment, we need to

take care of the number and types of updates (time consuming in NoSQL),

how distributed is the computation, and how to merge results before the Reduce

function. Thus, we will compare the three approaches in incremental modes in

a distributed environment.

7.6.3.1. Naive method

To compute the naive method in a distributed environment, we need to

compute all the similarities between all the items. This approach is not

realistic; in fact, NoSQL databases do not provide “join” operations, which

are necessary to compute pairs, and making M queries on a collection is not a

proper solution. Thus, a two-step algorithm is necessary to achieve it, and it is

illustrated in Map/Reduce language in Figure 7.2.

The first step focuses on the term dimension (N ), which is lower than

the item one, as in [ELS 08] with similarity computations with Map/Reduce.

It executes one query that creates for each term a list of (doc,weight). The

second step computes the result of the previous step by summing the term-pair

similarities for each term. The result of the previous step is the opposite of

TDV, and a simple query gives the TDV of each term of the collection. The

similarity is here simplified to the sum of common weighted terms between

documents.



226 NoSQL Data Models

First step
map(){

for(t in terms)
emit(t.tID, {"docId":docId,

"w":t.w});
}

reduce (key, values){
return {"tID":key, "docs":values};

}

Second step

map(){
for(d1 in docs)

for(d2 in docs)
if(d1.docID < d2.docID)

emit(tID, d1.w*d2*w);
}

reduce (key, values){
sum = 0;
for(v in values)

sum += v;
return sum;

}

Figure 7.2. Map/Reduce steps for the Naive Method

We can see that huge lists of documents and weights are produced and

aggregated for each term. Once the result of this step is computed and stored

on several servers, the second step is computed with it. It provides for each

pair of documents the sum of term similarities, and then computes the density

(with and without the term). The obtained TDV is computed in a simpler

way by computing only the sum of term pairs between documents. Therefore,

TDVs will be flattened in comparison to the standard values. However, the

computation of these values is far more efficient in this context.

The incremental approach adds or removes term weights for every term

of the stored collection obtained in the first step. Then, it continues by:

i) removing the first step; ii) adding term weights from the new item and

removing the oldest one (two update queries on all term documents); and iii)

computing the second step.

7.6.3.2. Centroid method

To compute the centroid method in a distributed environment, we need

to compute the centroid on all the stored items. To achieve this, a two-step

Map/Reduce process is defined (Figure 7.3).

The first step computes the centroid by summing the terms weight from

all the items, creating a centroidV ector in the Reduce function, where

each key “tID” is the sum of weights in the collection for this term.

Once centroidV ector is obtained, the second step computes the similarities

between all documents with this centroid. Each Map function produces a

similarity with the centroid for a given term, after removing the term from the

document (terms - t). The Reduce function sums the similarities of a key “tID”
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to produce the density of the collection for this term. The result is the density

Δ (null key) and every terms’ (tID) density Δi. Recall that tdv(i) = Δi−Δ.

First step
map(){

for(t in terms)
emit(t.tID, t.w);

}

reduce (key, values){
sum = 0;
for(v in values) sum += v;
return sum;

}
Second step

map(){
centroid = [centroidVector];
emit(null, sim(terms, centroid));
for(t in terms)

emit(t.tID, sim(terms-t, centroid));
}

reduce (key, values){
sum = 0
for(v in values) sum += v;
return sum;

}

Figure 7.3. Map/Reduce steps for the Centroid Method

The incremental approach modifies the previous steps by: i) removing

the first step, ii) adding the incoming item and removing the oldest one,

iii) updating the centroid directly in main memory (no space consumption) and

iv) computing the second step.

7.6.3.3. Clustering method

The distributed clustering method must compute the three components to

define the number of clusters: α (document vector), β (term vector) and δ
(dissimilarity matrix’s diagonal). A two-step algorithm is then necessary as

shown in Figure 7.4.

The first step focuses on α and β computation. In the Map function,

we must distinguish types of computations by creating a specific key: type

(α, β) and value (termID and docID). The Reduce functions then aggregate the

values and produce all the information as output. Both vectors are recomposed

locally.

The second step is optimized to compute either δ and every δi (without

terms) to produce the number of clusters C and Ci. The Map function produces

an array of sums of term weights combined with β for all the terms. The

Reduce function makes for each termID the sum of all δi, combined with

α to give the final number of clusters. Final TDV are computed locally by

making the difference between C (key “null”) and every Ci. The drawback of
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this approach is to send very huge vectors (α and β) in the query to all the

servers, which increases the network communication cost.

First step
map(){

var alpha = 0;
for(t in terms){

alpha += t.w;
emit({"t":"beta","v":t.tID}, t.w});

}
emit({"t":"alpha","v":docID}, alpha});

}

reduce (key, values){
sum = 0;
for(v in values)
sum += v;

return sum;
}

Second step
map(){
sum = [];
beta = [betaVector];
for(t in terms){
sum[0] += t.w ** 2 / beta[t.tID];
sum[t.tID] += t.w ** 2 / beta[t.tID];

}
for(key => value in sum)
if(key != 0)emit(key,sum[0]-sum[key]);
else emit(null,sum[0]);

}

reduce (key, values){
sum = 0;
alpha = [alphaVector];
for(v in values)
sum += v;

return sum / alpha[key];
}

Figure 7.4. Map/Reduce steps for the Clustering Method

The incremental adaptation of this distributed algorithm requires updating

α, β and δ. To achieve this, we: i) remove the first step, ii) update α and β
locally and add the new item in the collection and iii) process the second step.

7.7. Experiments

In this section, we study the behavior of TDV computation, the filtering

system in both centralized and NoSQL environments. We will also show the

impact of several parameters (i.e. novelty threshold, diversity and size of

the sliding window) with a real dataset of items. Finally, thanks to a user

validation, we study the quality of our system with different settings and a

periodic filtering based on a top-k approach.
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7.7.1. Implementation and description of datasets

For our experiments, we used a subset from a real dataset of items

acquired over an 8-month campaign from March to October 2010 [TRA 14].

Subscriptions were generated by using the ALIAS sampling method [WAL 77].

It produced 10M subscriptions that follow the distribution of term occurrences

on the Web, and the Web query size reported in [BEI 04], based

on the vocabulary of 1.5M distinct terms extracted from items. It is

characterized among others by a maximum size equal to 12 terms and on

average 2.2 terms. We implemented the filtering system with the standard

Java v1.6.0_20. All experiments were run on a 3.60 GHz quad-core processor

with 16 GB JVM memory.

7.7.2. TDV updates

In order to evaluate TDV updates using a static and incremental approach

in a NoSQL environment, we stored our collection of items in a MongoDB

database. To simulate the incremental insert of items we measured the average

time on the last 10,000 items. We made our experiments on a cluster of 16

servers and on a subset of our dataset (640k items). To optimize the reduce
steps of our treatment, we needed to choose which information to shard
(organize data on several servers). By looking at reduced keys that are used on

the second steps, it groups on the tID. However, each item has several terms

and we chose the most popular term of each item (after a local sort) to be the

most selective one. Thus, items are organized according to their most popular

terms in the collection.

Figure 7.5 plots the performances (average time to process an item in

milliseconds in log scale) of each approach by varying the amount of treated

items. We must notice that the naive static algorithm is not shown since it took

more than 800s to process each item. We can see that, in a static mode, the

clustering method obtains better results than the centroid one, but equivalently

around 640k items. In fact, the centroid method is less dependent on the

number of items to process since every item only processes the centroid, while

the clustering method has to provide the β vector whose size is the number

of items. For the incremental implementations, the naive method grows up too

fast, while the clustering method requires the processing of β vectors. Finally,

the incremental centroid method in a NoSQL environment remains constant

for each item.
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Figure 7.5. TDV computation costs in a NoSQL
environment. Static vs Incremental

7.7.3. Filtering rate

In this section, we study the impact of the novelty threshold and diversity

on the filtering rate, as well as of the number of subscriptions and the window

size. The results presented in this section correspond to the average filtering

rate (the number of notified items over the number of items that match the

subscription) of the subscriptions satisfied at least once during the last day of

the studied week.

7.7.3.1. Impact of the novelty threshold

Figure 7.6 shows the novelty’s filtering rate when varying the novelty

threshold for a window size of 24 hours (dashed lines). We observe that the

filtering rate increases linearly with the novelty threshold. We notice that 38%

of items are filtered when the novelty threshold is set to 50%, that is, when

half of information is not redundant. We recall that item’s novelty is based

on its weighted coverage (definition 7.4). On average, only 20% of items that

satisfy a subscription do not contain redundant information: 80% of the items

are filtered out when the novelty threshold is equal to 100%.

7.7.3.2. Impact of diversity

Figure 7.6 also illustrates that filtering by diversity reduces the number of

items to notify (solid line). Diversity acts as a strong filter since the filtering

rate when considering only diversity (i.e. novelty threshold of 0%) is equal
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to 64.34%. Figure 7.6 proves that novelty and diversity are complementary

filters. It can be observed that the filtering rate slightly increases with the value

of the novelty threshold if diversity is also considered (64.34% for a novelty

threshold of 0% and up to 82% for a threshold of 100%). However, the benefit

of having both filters is double since filtering by novelty further allows us to

decrease the number of items to consider for the costly diversity computation.

Figure 7.6. Filtering rate by varying novelty threshold

For the following experiments, we set the novelty threshold to 50% (best

quality from Table 7.5) and take into account the diversity for the filtering

process.

7.7.3.3. Impact of window size

Table 7.3 shows the filtering rate for different sliding window sizes. The

size of the window affects the filtering rate: with a larger window size, the

items stay longer in histories and are used to filter new items. Although larger

sliding windows have an impact on the length of histories (see next section),

items notified in large sliding windows stay for a long time in histories, but

information remains diverse enough to generate new notifications. For the

following experiments, the sliding window size is set to 24 hours.
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window Filtering
Size Rate
12 H 61.06%

24 H 70.71%

48 H 75.93%

Table 7.3. Filtering rate by varying window size

7.7.3.4. Impact of subscription size

Table 7.4 presents, for each size of subscriptions, its distribution which

follows the one from Web queries [BEI 04]. Most of the subscriptions are

short (size less than 4). We can also note that the number of notified items

by subscription decreases drastically with the subscription size: while short

subscriptions are often matched (>500 items/day), large subscriptions are

rarely notified (< 5 items/day).

|s| # of subscriptions Average # of Filtering rate
statisfied items

1 2 030 375 505.31 86.79%

2 1 804 265 21.94 57.71%

3 293 666 4.98 42.88%

>3 28 776 2.45 35.52%

Table 7.4. Number of subscription & notifications
w.r.t. subscription size

According to our results, we can say that the filtering rate is highly

dependent on diversity (present or not) as well as the novelty threshold.

However, subscription size also has a significant impact.

7.7.3.5. History size

We capture the variation in history size over time. We get the average size

every six hours over the studied week with three different sliding window sizes.

Figure 7.7 shows this variation for a novelty threshold equal to 50%, the values

presented are the average size of the history of subscriptions satisfied at least

once in the first six hours of the week (3.35 million subscriptions). It should

be noted that the size of the history at time τ is equal to the number of items in

the window of the considered size p (items published after τ − p). During the

initialization phase, histories become larger with large sliding windows. The

peak of each sliding window corresponds to the accumulation of items that
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ends at window-size period (12h/24h/48h). The accumulation is due to the fact

that empty histories do not play their filtering role. Indeed, since density keeps

growing during this initialization step, there is almost no filtering by diversity

and most items are notified. After this initialization period, the items which

were greedily added to histories at the beginning go out the sliding window,

which leads to a drastic decrease in the history size during one window-size

period. First, items disappear which contributes to the gap between the peak

and the depth exactly one period after the history size (12h/24h/48h). The same

effect occurs with a lesser magnitude for the 12h and 48h sliding window-

size; in fact a small sliding window empties quickly and must restart the

density computation, while a large sliding window empties slowly and filters

a lot. The 24h sliding window-size has a more stable behavior since it fills

up and empties with an appropriate rate. The history now allows us to filter

items by novelty and diversity and its size stabilizes. We also measured this

variation with different novelty thresholds and confirmed these conclusions.

The initialization phase corresponds to the diversification of histories.

Figure 7.7. Variation in history size over time

Another conclusion from Figure 7.7 is that the history size is dependent

on the window size. For 12h and 24h, the number of items in the history is

globally equal to the window size (10/20), while the 48h sliding window-size is

half more with 70. Even if old items contribute to diversifying the information,

the filtering rate (Table 7.3) growth is not proportional to the window size, as

with the history size which needs a greater number of items to filter diversity.
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7.7.4. Performance evaluation in the centralized environment

As discussed in section 7.5.1.2, we present here three different

implementations of our system: a NAÏVE approach without optimization, a

CO-OCCURRENCE approach with the exploitation of the co-occurrence ratio σ
of items, and a DIVERSITY approach that pre-computes and stores densities in

every history.

7.7.4.1. Memory requirements

Since the CO-OCCURRENCE approach stores extra values only during the

filtering process, the amount of space used by this implementation is equal

to the NAÏVE implementation. Consequently, we present comparison only

between the NAÏVE and the DIVERSITY implementations.

Figure 7.8. Memory space versus novelty threshold

Figure 7.8 shows the memory space used by the sliding window and

subscription histories for various novelty thresholds. When the filtering rate

is increasing, fewer items are stored in the sliding window; thus, it reduces

memory consumption for both optimized and normal implementations. The

DIVERSITY implementation requires more memory space since sums of

distance scores are pre-computed and stored for each history. We observed that

it requires consequently a memory space proportional to the size of histories,

and so, inversely proportional to the filtering rate noticed in Figure 7.6. For

instance, for a rate of 50%, we require 2.866MB of memory, while, for a rate

of 100% (+16%), we require only 2.387 MB (–16.68%).
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Figure 7.9. Memory space versus number of subscriptions

Figure 7.9 illustrates the variation in the memory consumption by varying

the number of subscriptions. For this experiment, the filtering rate and

the average sliding window size are fixed. We observe that the memory

space increases linearly w.r.t. the number of subscriptions indexed in both

implementations, since each history store information is linked to the sliding

window. However, the DIVERSITY implementation requires more space to

store extra-information compared with the NAÏVE version, but the ratio

remains constant at 2.4. The NAÏVE implementation uses 399 MB (resp. 1009

MB), while the DIVERSITY optimization uses 1227 MB (resp. 2866 MB) for

2M (resp. 10M) of subscriptions.

7.7.4.2. Processing time

We now study the gain obtained by the optimizations of our system.

Figure 7.10 shows that the average time (in log scale) decreases with the

novelty threshold, and therefore, the history size. The NAÏVE implementation

requires much more computing time especially for low novelty thresholds. The

rationale lies in its CO-OCCURRENCE optimization, which reduces the number

of similarities and distances computations. The NAÏVE implementation is

on average five times more costly than the optimized ones, except for

high thresholds where histories are short and few similarities/distances

are computed. Moreover, the difference between CO-OCCURRENCE and

DIVERSITY results decreases with the size of histories, which depends on the

novelty threshold: the gain is 68% for a novelty threshold of 0%, and 13% for
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a novelty threshold of 80%, due to the complexity of O(1) (find Io.sum) for

the diversity computation.

Figure 7.10. Processing time when varying novelty threshold

Since the processing time mainly relies on history size, it is also dependent

on the sliding window size, especially for the NAÏVE and CO-OCCURRENCE

implementations, where the growth of computation time is more important as

shown in Figure 7.11. In fact, computation of diversity is dependent on sliding

window size. On the other hand, the processing time for the DIVERSITY

implementation exhibits a moderate increase, except for large window sizes

(48h) where histories are larger, which means more distance computation

and updates of sums. In fact, DIVERSITY stores sums of distances between

items, while CO-OCCURRENCE implementation requires recomputing them.

As larger windows filter more (Table 7.3), the distance computations are

performed for each history, except for the DIVERSITY implementation which

adds those values the first time an item is notified whatever the number

of updates for histories is. On the other hand, the NAÏVE implementation

computes distances each time, even if histories are updated. This requires

21–31 times more time than optimized solutions.

As we can see in Figure 7.12, the processing time increases linearly

with the number of subscriptions for both optimizations, while the NAÏVE

implementation increases very quickly since no co-occurrences between

subscriptions are used. According to CO-OCCURRENCE and DIVERSITY

implementations, it was expected to be sub-linear since similarity and distance

computations between items are stored during the process to avoid its
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recomputation. Therefore, with the growth of the number of subscriptions,

the probability of having the same couple of items in different subscriptions

increases. However, the gain for CO-OCCURRENCE is far more interesting

(–93%) than DIVERSITY (–63%) since similarity and distance functions

are very costly (compared with sums for diversities). Nevertheless, the

DIVERSITY implementation needs 2.7 times less time on average than the

CO-OCCURRENCE one.

Figure 7.11. Processing time for different sizes of sliding windows

Figure 7.12. Processing time by varying the number of subscriptions
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7.7.5. Performance evaluation in a distributed environment

We now study the effect of distributing our filtering process as proposed in

section 7.5.2. Subscription- and item-based models are placed on a collection

with 1M, 2M and 4M subscriptions with 10 days of history already processed.

We then get the average processing time of items with 100k items. We plot the

processing time by varying the distribution of the number of shards (servers).

Figure 7.13 plots the processing time of the subscription-based model

for the matching process (dotted lines) and the total time with subscription

updates (lines). The filtering process is efficient since it takes around 300 ms

per item. However, we can notice that the update time is getting more and

more important with the number of shards. In fact, the number of updates is

spread all over the shards; since those updates are appended in blocks of data,

new reallocation of blocks and distribution of data must be done. This time

increases dramatically, which shows that this solution is not scalable.

Figure 7.13. Processing time for subscription-based model
by varying the number of shards

Figure 7.14 shows the processing time of the item-based model for both

matching and total times. We can see that the update time is very low (between

50 and 70 ms); in fact, only one item is stored. This time increases since the

number of subscriptions to be nested increases. According to the filtering time,

it is longer than the subscription-based model (around 3 times more), but the
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total time stabilizes after 20 shards for 4M subscriptions. This is due to the fact

that the distribution of the process is maximized in connection with the filtering

step (Map) and the shuffle step, which requires network communications.

Figure 7.14. Processing time for item-based model
by varying the number of shards

Despite good response times for the item-based model, it remains 50 times

higher than the centralized version. The factorization effect and the shared

history management have a huge impact on the processing time, which cannot

be done in a distributed context since data cannot be properly interconnected.

However, we can see that, in Figure 7.14, the processing time reaches

an asymptote (1000 ms) for any number of subscriptions. Consequently,

with more subscriptions, the difference in time between the distributed and

centralized versions will decrease, and the centralized system will not fit in the

main memory with a huge number of subscriptions (see Figure 7.9).

By extrapolating our results, the centralized version (Figure 7.12) should

reach the threshold of 1000 ms of the processing time with 400M more

subscriptions, which would require more than 40 GB of main memory. In a

distributed context, it should require about 120 shards to scale up (Figure 7.14).

The point of intersection of the curves can be considered as the threshold of

Big Data (volume) in this context.
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7.7.6. Quality of filtering

In this section, we study the quality of our filtering step with users’

behavior. To compute the relevance of our system, we compare the chosen

items by users and those obtained by our system. To validate our choice, we

compare the quality of filtering when changing the weighting score, the novelty

similarity and its threshold. We also compare our real-time filtering with a

top-k algorithm [DRO 09b].

To achieve this, we have extracted 10 subscriptions on which we gathered

matched items. Then, we asked users to manually filter items according to

novelty and diversity of information. Users had to read texts and decide if

an item is new or if its information is globally contained in previous items.

In order to preserve our context of real-time filtering, items were displayed

in sequence in order to filter them in chronological order and histories were

shown to users. Here, 60 users performed 106 validations on our subscriptions.

These users were academics and PhD students in computer science. Since

filtering out by novelty is more trivial than that by diversity, we kept items

in the result set only if they were chosen by more than 60% of the users (75%

for novelty), giving more weight to diversity.

The top-k algorithm [DRO 09b] determines the k most distant items

from a set of items satisfying subscriptions to achieve diversity. A result

set is initialized with the two most distant items among the items satisfying

the subscription and extended with the next most diversifying items. Each

subscription has its own value k, which is equal to the history size generated

by our approach. Having the same size will allow us to make result sets

comparable for quality measurement. Moreover, this algorithm cannot take

into account the novelty since it is an asymmetric measure based on time. We

must recall that our window-based approach relies on the time assumption,

which means that none of the notified items can be removed from the result

set, while the top-k algorithm could put an old item in the new snapshot.

Table 7.5 shows the average precision, recall and F-Measure for all the

subscriptions compared with the user result set. Different settings on our

system have been made to find the most relevant measure for our filtering step:

diversity without novelty, the top-k approach result set, different thresholds

for the weighted coverage with diversity, changing TDV by the standard

TF-IDF with and without novelty and, finally, novelty computed by the Jaccard
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distance. We compare especially our novelty measure by weighted coverage

(Definition 7.4) with the standard Jaccard similarity for different thresholds,

and also the relevance of our term weight TDV versus TF-IDF, either in

diversity or novelty. We also study the behavior of the top-k algorithm.

Diversity top-k Coverage Coverage Coverage TF-IDF TF-IDF Jaccard
only 25% 50% 75% 50% 50%

Precision 0.782 0.711 0.930 0.939 0.944 0.764 0.884 0.916

Recall 0.698 0.634 0.652 0.652 0.610 0.618 0.545 0.652

F-Measure 0.726 0.660 0.732 0.736 0.710 0.626 0.646 0.729

Table 7.5. Filtering relevance with various techniques,
thresholds and metrics

We can see that a combination of diversity and novelty produces better

results than diversity alone, especially for the precision of the result.

However, the result set recall decreases when using the novelty, which

can be too selective and not diverse enough. As expected, TF-IDF weights

cannot have a good impact on measures since items are short, so the

TF is low and only IDF is taken into account. With a low precision

(0.884) and recall (0.545), it gives the lowest F-Measure of our tests.

According to novelty, the effect of the asymmetric measure and lack of

weights for terms makes the Jaccard measure less relevant to the precision

of the result set. Finally, the top-k technique is not as relevant as our

solution since using an interchange algorithm to choose the most diverse

items does not rely on a real-time assumption as for user validation.

The relevance of our technique with a real-time filtering system using a

TDV-weighted coverage measure for novelty with a threshold of 50% gives

a good accuracy.

7.8. Conclusion

In this chapter, we presented a Pub/Sub system, which filters by novelty

and diversity on the fly. The filtering is based on items already notified to a

user. We chose a sliding window based on time to manage the subscriptions

history. Our main contributions are (a) the proposition of the TDV to weight

terms, combined with (b) a weighted coverage measure for novelty which is

asymmetric and adapted to small items, (c) designing an optimized system



242 NoSQL Data Models

which factorizes similarities and distances, and reduces diversity computation

costs, (d) a distributed implementation of our filtering process, (e) a distributed

and incremental implementation of TDV updates computation and (f) a quality

measurement of our propositions with a user validation based on real-time

filtering with novelty and diversity.

From our experimental study, we show that novelty and diversity are

complementary filters. Moreover, we observe that the filtering rate depends

on novelty threshold and on window size, and diversity has less effect for a

large window size. The performances of our system are also studied and we

obtain an average gain of 97% in the processing time with our optimization

for factorizing co-occurrences and computing the density of history. The

distributed implementation of the filtering process is efficient with an

item-based modeling but with a very high number of subscriptions (about

400M). We compare the quality of our system with different settings and a

top-k and show that real-time delivery is a strong constraint which our system

guarantees with a TDV-weighted coverage combined with diversity.

For further work, we aim to tune the quality of the diversity measure since

cosine and Euclidean do not focus on the same kind of filtering. Another track

is to integrate correlations between users in order to integrate collaborative

filtering such that the user can filter items by interests thanks to other users.
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