 Programming with Macro's on the Haas CNC
10/14/00

[image: image1.wmf]1

Programming with

Macro's on the

Haas CNC

Dave Wolf

Haas Automation

October 14, 2000

[image: image2.wmf]2

I. Goals of this class

n

Understand the differences between a macro and a macro

statement.

n

Learn how to use macro statements to simplify CNC

programming and to aid in troubleshooting.

n

Improve G-code programming skills

n

Learn to analyze G-code programs with which you may

come in contact.

· Some familiarity with the Haas control and with G-code programming is assumed.

[image: image3.wmf]3

I.a.Topics of Discussion

n

Macro’s- What are they? How are they used?

n

G-codes that are useful for macros- a review

n

Aliasing a macro to a G- or M-code.

n

The elements of macro programming- variables, operators,

functions, expressions, and statements.

n

System macro variables

n

The effect of settings on macros

[image: image4.wmf]4

II. Macro’s- what are they?

n

Definition - Any program that performs a common function

and will be executed repeatedly within a g-code program.

n

Macro statements - Any non-G-code command.

n

Why? - Macro’s provide flexibility.

n

Macro parameter bit- Required before loading of any

macro statement.

· Definition - A macro is a form of sub-program that includes non-G-code commands. It is typically a common operation that will be called many times.

SYMBOL 183 \f "Symbol" \s 10 \h
Macro statements - Any non-G-code command. Includes statements such as: IF, WHILE, GOTO, math functions, and variables. Haas requires that the macro parameter bit be set in order to interpret macro statements. If it is not set, attempts to enter a macro statement during editing will result in an alarm. If it is not set, macro statements within programs that are being loaded will be changed to comments.

SYMBOL 183 \f "Symbol" \s 10 \h
Why? - A G-code program is rigid in structure. It cannot be altered in mid-operation. Offsets are the only things that can be used to alter machine path from one run to the next. Macro's allow additional 'macro statements' that make it more flexible.

SYMBOL 183 \f "Symbol" \s 10 \h
Macro Enable parameter bit – Parameter 57 bit 22. This parameter allows for the entry of macro statements. This parameter is used at the time of program entry not program execution. If this parameter is turned off and a macro statement is entered, the control will ignore it. If the program is loaded from a file, these statement will be converted to comments. If the statement is loaded manually in MDI or edit modes, the control will give an alarm.

[image: image5.wmf]5

Problem #1

 - Macro Enable

parameter

n

Setup- Get the simulator ready for programming. Begin by creating

and editing program O9000.

n

The purpose of this exercise is to demonstrate the effects of the

macro enable parameter.

n

Attempt to load a macro statement both with and without the macro

enable parameter enabled.

n

Subsequent problems will build on the programs that are created in

previous problems.

Problem #1:

· Getting started- Start-up and zero control. Select program 9000 and switch to edit mode. Press reset before running any programs. Edit programs in edit mode. Run programs from mem mode. Each program will build on the previous ones.

· Go to the parameter page. Find parameter 57 bit 22, “ENABLE MACRO”. Set this parameter to ‘0’.

· Go to the program page. Attempt to enter the following block to the end of the program: #1124=1. What happens? What messages/alarms show up?

· Go to the parameter page. Find parameter 57 bit 22, “ENABLE MACRO”. Set this parameter to ‘1’.

· Go to the program page. Attempt to enter the same block: #1124=1. What happens? What messages/alarms show up?

· The program will look like this when finished:

O9000;

#1124=1;

[image: image6.wmf]6

III. G-codes that are useful for

macros- a review

n

The following are some G-codes that are of particular

interest to the macro programmer.

u

M98 Pxx

 - Sub Program Call.

u

G65 Pxx

 - Macro subprogram call. Allows passing of variables.

u

M97 Pxx

 - Local Sub Routine Call.

u

M96 Pxx Qxx

 - Conditional Local Branch when Discrete Input

Signal is 0.

u

M00, M01, M30

 - Stop Program.

u

M99

 - Sub Program Return or Loop.

u

G04

 - Dwell.

u

G103

 - Block Lookahead Limit. No cutter comp allowed.

G-codes:--

The following are G-codes that are of particular interest to the macro programmer. They are available regardless of whether macro's are enabled.

M98 - Sub Program Call. Pnnnn indicates the Onnnn of the program being called. Lnn can be added to indicated the number of times the subprogram is to be called. The subprogram must already be loaded into memory and must include an M99 to return to the main. No arguments may be passed.

G65 - Macro subprogram call. Allows arguments to be passed to subprogram. Pnnnn indicates the Onnnn of the program being called. Lnn can be added to indicated the number of times the subprogram is to be called. Arguments are preceded with a command letter (A, B, etc.). Arguments are copied to local variables #1-#26.

M97 - Local Sub Routine Call. Pnnnn indicates beginning block number for subroutine. Cannot branch to another program.

M96 - Conditional Local Branch when Discrete Input Signal is 0. Qnn designates which input to test. Pnnnn designates the block to branch to if condition is true. Cannot branch to another program. Not available in DNC. Not available with cutter comp. Stops Look ahead until after test is complete.

M00 - Stop Program. Halts program. Cycle start will continue at next block. Shuts off TSC.

M01 - Optional Program Stop. Same as M00 except that it won't stop if option stop is not turned on at front panel.

M30 - Program End and Rewind. Stops program. Returns cursor to beginning of program. Stops spindle, shuts off all coolant, and cancels all tool length offsets.

M99 - Sub Program/subroutine Return or Loop. Returns control to the main from a subroutine or subprogram. If it is in the main, it will continually loop back to the beginning of the program. If a Pnnnn is included, it performs an unconditional jump to the block indicated. This last mode is similar to the GOTO statement.

G103 - Block Lookahead Limit. Blocks are prepared well in advance in order to produce smooth motion. The number of blocks of Look ahead can be limited. G103 P0 or G103 disable limits. G103 Pnnnn indicates the number of blocks allowed to be viewed in advance. The actual number is Pnn + 2. This means that the lower limit is 3 blocks. Not available with cutter comp.

G04 - Dwell. Pnnn indicates the dwell time. If there is a decimal point, the units are in seconds. If no decimal, the units are in milliseconds.

[image: image7.wmf]7

Problem #2

 - Program stop

n

The purpose of this exercise is to demonstrate the effects of various

program end types.

n

Programs in MDI do not require a program end.

n

Observe the effects of the various program ends on the program

counter (highlighted block)

n

This exercise will use M30, M00, and M99 as well as without any

end statement.

Problem #2:

· Add 3 end-of-blocks (;) to the end of program O9000. Run the program. What happens to the cursor (highlighted block)?

· Add M00 immediately after the ‘#1124=1;’. Run the program. What happens to the cursor (highlighted block)? Switch to the diagnostics page and locate the M21 output. Rerun the program. What happens to the output?

· Replace M00 with M99. Run the program. What happens to the cursor (highlighted block)? Switch to the diagnostics page and locate the M21 output. Rerun the program. What happens to the output?

· Replace M99 with M30. Run the program. What happens to the cursor (highlighted block)? Switch to the diagnostics page and locate the M21 output. Rerun the program. What happens to the output?

· Delete the end-of-blocks at the end of the program. The program will look like this when finished:

O9000;

#1124=1;

M30;

[image: image8.wmf]8

Problem #3

 - Program lookahead

n

The purpose of this exercise is to demonstrate the effects of

program lookahead.

n

Observe the effects of G103 on the timing of when the output is

turned on and off.

n

The goal of this exercise is to turn an output on, wait for 2 sec., then

turn it off and stop.

Problem #3:

· Add ‘G04 P2.; #1124=0;’ immediately before the M30. Switch to the diagnostics page and locate the M21 output. Run the program and observe the status of this output. What happened? When did the output turn on and off?

· Add ‘G103 P1;’ immediately after the O9000. Switch to the diagnostics page and locate the M21 output. Run the program and observe the status of this output. What happened? When did the output turn on and off?

· Add 3 end-of-blocks (;) between the G103 P1 and the #1124=1. Add another 3 end-of-blocks (;) between the G04 P2. and the #1124=0. Switch to the diagnostics page and locate the M21 output. Run the program and observe the status of this output. What happened? When did the output turn on and off?

· The program will look like this when finished:

O9000;

G103 P1;

;

;

;

#1124=1;

G04 P2.;

;

;

;

#1124=0;

M30;

[image: image9.wmf]9

IV. Program syntax

n

Parentheses - ()

u

Are used to enclose comments.

u

Not executed as a part of the program.

n

Brackets - []

u

Are used to enclose macro expressions.

u

Used to control the order of execution.

u

Executed as part of the program.

n

Line numbers - Nxxxx

SYMBOL 183 \f "Symbol" \s 10 \h
Parentheses – Parentheses are used to enclose comments. They indicate text that will not be executed as a part of the g-code program. They are also used in conjunction with certain macro variables to provide the text for a programmable stop or alarm. Multiple levels of parentheses are not allowed (i.e. ((text)text) is not allowed). An opening parenthesis, (, must always have a close,).

SYMBOL 183 \f "Symbol" \s 10 \h
Comments are used to add notes to the program code. They can describe revisions, document program flow in English, and even give a program a name.

SYMBOL 183 \f "Symbol" \s 10 \h
With macro’s disabled, any block that contains a macro statement will be converted to comments. The comment will begin with a question mark. This will occur at the time the file is loaded into the control. (i.e. (? #1=#1+#3))

SYMBOL 183 \f "Symbol" \s 10 \h
Brackets – Brackets are used to control the order of execution of expressions within a g-code program. Expressions within the innermost set of brackets are executed first. Multiple levels of brackets are allowed (i.e. ABS[[3+1]*2] is acceptable). An opening bracket, [, must always have a close,].

SYMBOL 183 \f "Symbol" \s 10 \h
Line Numbers – Line numbers are a way of assigning a label to a block. Nnn may be placed anywhere on the line however it is typically in the beginning. They are optional. Line numbers can be used with sub-routine calls. Nnn indicates the target of a M99 Pnn, M97 Pnn, or GOTOnn statement.

[image: image10.wmf]10

V. Aliasing a macro to a G- or M-

code

n

Aliasing

 is assigning a G-code name to a program.

n

Aliasing

takes the place of a G65 or M98.

n

The assignment takes place through parameters 81-100.

n

Only programs O9000-9019 may be

aliased

.

SYMBOL 183 \f "Symbol" \s 10 \h
Aliasing – Aliasing is the act of assigning a name (G-code) to a specific program. Macro's are typically a subprogram, not a stand-alone program. They are called via G65 or M98. This subprogram call can be replaced with a single M- or G-code. The assignment of this new code to a program takes place throught parameters 81-100. Only programs O9000 to O9019 may be aliased.

SYMBOL 183 \f "Symbol" \s 10 \h
When aliased to a G-code, variables may be passed. With an M-code, variables may not be passed.

SYMBOL 183 \f "Symbol" \s 10 \h
This is particularly useful when assigning a function to an M-code. (For example, M50 performs a pallet change on a vertical. M50 is aliased to program O9001.)

[image: image11.wmf]11

Problem #4

 - Sub-program calls

n

The purpose of this exercise is to demonstrate the usage of sub-

program calls.

n

Create a program(O0010) that will call the program created

previously (O9000)

n

Use any method of sub program call- M98, G65, or aliasing

Problem #4:

· Modify program O9000. Change the M30 to an M99.

· Start a new program, O0010. Using any sub-program call (aliasing, M98, or G65), write a line that will call program O9000. End this program with an M30.

· Enable single block mode. (press single block button).

· Step through program O0010 using cycle start. Is program O9000 called properly? What happens when the M99 in program O9000 is reached?

[image: image12.wmf]12

VI. The elements of macro

programming

n

Variables

n

Operators

n

Functions

n

Expressions

n

Statements

[image: image13.wmf]13

VI.a.The elements of macro

programming - Variables

n

A variable is a symbol that can assume a changing value.

They provide great flexibility in macro programming.

u

Local variables

 - Local variables are not passed to other

programs.

u

Global variables

 - Global variables are general purpose. They

are saved at power-down.

u

System variables

 - System variables are global and are

assigned a specific function in cnc software.

SYMBOL 183 \f "Symbol" \s 10 \h
Variables - Variables provide great flexibility in macro programming. They can be changed manually as well as by the program itself. Variables always numbered and follow a # sign. E.g. #1, #1100, #33. Variables can be a maximum of four digits. Both local and global variable can be viewed and edited in the macro variable page of the current commands display. Although system variables can be written to and read from, they cannot be viewed. Parameters and settings cannot be accessed using macro variables. Variables can replace any constant in a G-code command (e.g. G00 X#100). Variables may be nested (e.g. #[#100]) to provide indirect addressing

SYMBOL 183 \f "Symbol" \s 10 \h
Local variables - Local variables are in the range of #1 to #33. These are cleared after each G65 call. Local variables are used to transfer data from the main to the macro (on the G65 line). They can also be used as disposable storage locations. Note that when passing variables, either normal or alternate addressing will be selected, not both.

SYMBOL 183 \f "Symbol" \s 10 \h
In a source file, data can be passed to a subprogram. See Appendix C. The data is assigned to a variable depending upon the alphabetic code used. For example, a G65 P12 X1. T3. is a sub-progarm call to program O0012. As program O0010 is run, the X and T data will be available in variables #24 and #20 respectively. If multiple IJK’s are present, then the alternate addressing is assumed.

SYMBOL 183 \f "Symbol" \s 10 \h
Global variables - Global variables are in the range of #100-199 and #500-699. These are not cleared with each G65 call.

SYMBOL 183 \f "Symbol" \s 10 \h
System variables - System variables are always four digits. They provide a way to interact with the machine operation. They can be used to read and write to the discrete I/O. They provide access to all offsets, positions, timers, programmable alarms, and modal group codes. See pages 163-167 for a more detailed description.

SYMBOL 183 \f "Symbol" \s 10 \h
Macro variables can be viewed on the Current commands page.

SYMBOL 183 \f "Symbol" \s 10 \h
Global macro variables are typically rounded in the last digit. For example, a 5 may be stored as 4.999999. This is particularly true of math operations. The statement 6/2 may be evaluated as 3.000001. 6/2+6/2 could have a answer anywhere in the range 5.999998 to 6.000002. If this value were then compared with 6, the answer may be true or false depending on the the rounding. This must be accounted for when using these variables. If a program is expecting a whole number, it is frequently useful to use the ROUND function described later.

[image: image14.wmf]14

VI.b. The elements of macro

programming - Operators

n

Operators are symbols and commands that modify data.

u

Arithmetic operators

 - Arithmetic operators perform simple

math functions. They are +, -, *, /, and MOD.

u

Logical operators

 - Logical operators work on binary bit

numbers. They are OR, AND, and XOR.

u

Boolean operators

 - Boolean operators are always evaluated

as true(1) or false(0). They are EQ, NE, GT, LT, GE, and LE.

SYMBOL 183 \f "Symbol" \s 10 \h
Operators - Operators are symbols and commands that modify data. They are classified as Arithmetic, Logical, and Boolean. Results from an operator can be integers (or binary), floating point, or true(1)/false(0).

SYMBOL 183 \f "Symbol" \s 10 \h
Arithmetic operators - Arithmetic operators perform simple math functions. They are +, -, *, /, and MOD. Plus and minus may also be used to indicate the sign of the data. Arithmetic operators may not be used in conditional statements. MOD performs a division and outputs the remainder. */ are executed before +-. x MOD y is the same as x/ySYMBOL 174 \f "Symbol" remainder. (1+2, #1022-1)

SYMBOL 183 \f "Symbol" \s 10 \h
Logical operators - Logical operators work on binary bit numbers. When performed on a floating point number, only the integer part will be used. These operators are OR, AND, and XOR. (#100 AND #22, #500 XOR 4)

SYMBOL 183 \f "Symbol" \s 10 \h
Boolean operators - Boolean operators are always evaluated as true(1) or false(0). They are EQ, NE, GT, LT, GE, and LE. (#100 EQ 0, #33 LE 4.5)

[image: image15.wmf]15

Problem #5

 - Counters

n

The purpose of this exercise is to demonstrate the usage of

variables.

n

Add a counter to program O0010.

Problem #5:

· Turn off single block mode.

· Add a counter to program O9000. This counter should increment by one, every time the program is run. Use any variable in the range 100 to 199.

· A counter is a variable that increments by 1 every time the program is run. They typically look like: #100=#100+1.

· Run program O0010. Observe the value of the counter variable. Does it increment properly?

[image: image16.wmf]16

VI.c. The elements of macro

programming - Functions

n

Functions are complex mathematical operations. They are

SIN, ASIN, COS, ACOS, TAN, ATAN, SQRT, ABS,

ROUND, and FIX.

n

DPRINT is a special case. It is used for outputting data

through the serial port. It is a stand-alone function.

SYMBOL 183 \f "Symbol" \s 10 \h
Functions - Functions are mathematical operations. They are complex routines that simplify programming.

SYMBOL 183 \f "Symbol" \s 10 \h
The functions are SIN, ASIN, COS, ACOS, TAN, ATAN, SQRT, ABS, ROUND, and FIX.

SYMBOL 183 \f "Symbol" \s 10 \h
ABS returns the absolute value of the given decimal.

SYMBOL 183 \f "Symbol" \s 10 \h
ROUND rounds off a decimal.

SYMBOL 183 \f "Symbol" \s 10 \h
FIX returns the whole number portion of a fraction with no rounding. If FIX is used in an arithmetic expression, it will round to the nearest whole number. If it used as an address, the fraction is rounded to the addresses significant precision. (i.e. X[ROUND[#1]] will round to 0.xxxx decimal places). (SQRT[4.], COS[#100]).

SYMBOL 183 \f "Symbol" \s 10 \h
DPRNT is a special function that allows data or text to be sent to the serial port.

[image: image17.wmf]17

VI.d. The elements of macro

programming - Expressions

n

Expressions are defined as a sequence of variables and

values surrounded by brackets [].

u

Arithmetic Expressions

 - Arithmetic Expressions produce a

floating point number or integer.

u

Conditional Expressions

 - Conditional Expressions produce a

value that is either true(1) or false(0).

SYMBOL 183 \f "Symbol" \s 10 \h
Expressions - Expressions are defined as a sequence of variables and values surrounded by brackets [].

SYMBOL 183 \f "Symbol" \s 10 \h
An entire expression can be assigned to a variable. For example, suppose #100=10 and #510=3. The expression #101= #[#100 +500] would load variable #101 with the value 3. This method is very useful when working with look-up tables.

SYMBOL 183 \f "Symbol" \s 10 \h
Arithmetic Expressions - Arithmetic Expressions produce a floating point number or integer. They can be used as stand alone in the form of assignments or in conjunction with other G-codes. (#3=[#3+1]*2, X[#501-#22], #[#2+2]=0)

SYMBOL 183 \f "Symbol" \s 10 \h
Conditional Expressions - Conditional Expressions produce a value that is either true(1) or false(0). They are used in conjunction with IF and WHILE. (IF [#100 EQ 4.5] THEN GOTO20, #2=[#4 GT 9.2])

[image: image18.wmf]18

Problem #6

 - Working with Macro

variables

n

The purpose of this exercise is to integrate the use of macro

expressions with standard G-codes.

n

Add machine moves to program O9000. Use macro variables to set

the position of these moves. Pass the move location or distance via

local variables.

n

Watch for correct formatting of the data.

Problem #6:

· Modify program O0010 so that the sub-program call includes the ability to pass a variable. Duplicate this block twice. Use the values -2., -3., -4.5 for the passing variable in each block.

· Modify the O9000 program to include some X-axis moves. Use ‘G00 G53 G90 X_’ for the move. Fill in the blank for the location value/variable.

· Run program O0010. Does the x-axis move to the correct spots? Is the counter incrementing properly?

· Modify the O9000 program to include some Y-axis moves. After the mill reaches the correct X location, copy this current location (#5021) to a macro variable in the range 100-199. Use the value in this variable to move the Y-axis by the same amount.

· Run program O0010. Do the X and Y-axes move to the correct spots? Is the counter incrementing properly?

· If done properly, this exercise should produce a stair-stepped motion. Did this occur?

[image: image19.wmf]19

VI.e. The elements of macro

programming - Statements

n

Statements are complete commands that perform an

action.

u

Assignment Statements

 - Used to assign a value to a variable.

u

Control Statements

 - Effect the order of execution of a program.

F

Unconditional Branch

 - GOTOnnnn - always jump to line

nnnn.

F

Conditional Branch/Execution

 - IF [<conditional expression

>] THEN <statement> - Execute statement only if the

condition is met.

F

Looping

 - WHILE [<conditional expression>] DOn;

<statements>; ENDn; - Loop while the condition is true.

SYMBOL 183 \f "Symbol" \s 10 \h
Statements - Statements are commands that can utilize variables, operators, and/or expressions.

SYMBOL 183 \f "Symbol" \s 10 \h
Assignment Statements - Assignment statements allow the user to change variables. They always include an equals (=) sign. When including arithmetic expressions, they must always be placed after the = sign. The syntax is as follows: #<variable>= <expression or variable>. (#100=#100+1, #150=#5021)

SYMBOL 183 \f "Symbol" \s 10 \h
Control Statements - Control statements allow the programmer to branch. They control program flow both conditionally and unconditionally.

SYMBOL 183 \f "Symbol" \s 10 \h
Unconditional Branch - An unconditional branch will always jump to a specified block in the current program. It is illegal to branch from one program to another. There are two methods of unconditional branch. M99 Pnnnn is the most common way to unconditional branch. GOTOnnnn is the same as M99 except that it may be placed on the same line as other G-codes. The GOTO statement can also include arithmetic expressions and variables. If the computed expression or variable includes a fraction, the nearest whole number will be used by GOTO. (GOTO3, GOTO#100, GOTO[#511+#22])

SYMBOL 183 \f "Symbol" \s 10 \h
Conditional Branch/Execution - IF [<conditional statement>] THEN <statement> is the command used for conditional branches and execution. The <statement> is executed if the <conditional statement> is evaluated as true(1). The <statement> can be an M99, GOTO, assignment statement, or G-code. THEN is optional. If the <statement> is an M99 or GOTO, then the IF is also optional. (IF [#1022 EQ 0] THEN GOTO3, IF [[#1024] OR [#1022 EQ 0]] #115=#115+1, [#1000] GOTO10)

SYMBOL 183 \f "Symbol" \s 10 \h
Looping - Traditional G-code allows looping using the L address. This will only allow a fixed number of loops. The WHILE statement allows for looping based on conditions. The format is:

WHILE [<conditional expression>] DOn

<statements>

ENDn

WHILE can be abbreviated WH. The DOn-ENDn are a matched pair. The value of n is limited to 1..3 due to a maximum of three nested loops per subroutine. The statements will be executed until the expression if evaluated as false. Eliminating the WHILE will result in an infinite loop. (WHILE [#1022 EQ 0] DO1; #100=#100+1; END1, WH [#[#33+1000] EQ 1] DO1; WH [#2 GT 4.] DO2; END2; END1)

[image: image20.wmf]20

Problem #7

 - Conditional

Statements

n

The purpose of this exercise is to demonstrate the usage of

conditional statements IF or WHILE.

n

Stop calling program O9000 after n-times. Program will then stop

execution.

n

Use IF or WHILE to determine if the max number of times has been

exceeded.

Problem #7:

· Reset the counter variable to zero (from problem #5).

· Delete 2 of the subprogram calls from program O0010. Replace them with a G28

· Modify the O0010 program so that it will run for a specific number of times. Use IF or WHILE to determine if this number of times has been exceeded. The program should stop after the program has run for the specified number of times. Use the value 5 for the number of times to be run. It is ok to use the counter in program O9000.

· Run program O0010. Was program O9000 performed the correct number of times?

[image: image21.wmf]21

VII. System macro variables

n

#709

macro not complete (hidden variable)

n

#3000

programmable alarm

n

#3001

millisecond timer

n

#3004

feed hold override

n

#3006

programmable stop

n

#4101-#4126

last block address data

n

#5021-#5026

current machine position

n

Discrete I/O

#10xx=inputs, #11xx=outputs

SYMBOL 183 \f "Symbol" \s 10 \h
System Variables – There are certain macro variables that are not available for general pupose use. These variabls have been assigned a specific function within the Haas contol. Some of these variables are read only. These variables allow program access to certain pieces of data within the control. These include such things as current machine position and parameters.

SYMBOL 183 \f "Symbol" \s 10 \h
System variables cannot be viewed directly.

Partial Variable Listing:

Variable #
Function

#0
Not a number (read only)

#1-#33
Macro call arguments (local variables)

#100-#199
General purpose variables saved on power off (global variables)

#1000-#1063
64 discrete inputs (read only)

#1100-#1155
56 discrete outputs

#3000
Programmable alarm

#3001
Millisecond timer

#3002
Hour timer

#3004
Override control

#3006
Programmable stop with message, 15 characters max

#4101-#4126
Previous block address codes

NOTE: Mapping of 4101 to 4126 is the same as the alphabetic addressing of “Macro Arguments section”; e.g. the statement X1.3 sets variable #4124 to 1.3.

#5021-#5025
Present machine coordinate position

NOTE: Variables are listed in XYZABCUVW order.

#6501-#6999
Parameters (read only)

[image: image22.wmf]22

Problem #8

 - System Variables

n

The purpose of this exercise is to demonstrate the usefulness of

system variables.

n

Measure how long it takes to perform the above test. Store this

value in a variable.

Problem #8:

· Reset the counter variable to zero (from problem #4).

· Modify the O0010 program so that the entire cycle (all 5 times) is timed. Store the value of the timer in a variable in the range 100-199. At the end of the cycle, display the message “cycle complete”.

· Run program O0010. How long did it take for the cycle? Was the message displayed?

[image: image23.wmf]23

VIII. The effect of settings on

macros

n

23

- 9xxxx Progs Edit lock

n

74

- 9xxxx Progs Trace

n

75

- 9xxxx Progs Single Block

SYMBOL 183 \f "Symbol" \s 10 \h
Settings – Certain settings can effect how programs are run. Programs O9xxxx are typically used for macro’s although any program can reside here. These settings effect all O9xxxx programs as a group.

SYMBOL 183 \f "Symbol" \s 10 \h
Edit lock prohibits the editing of any O9xxxx program. It also hides these programs in memory. If all programs are saved, the hidden programs will not be included.

SYMBOL 183 \f "Symbol" \s 10 \h
Trace allows for the program to be viewed during execution. This setting is useful for troubleshooting. While disabled, the control will wait with the message “running” while the macro is executed.

SYMBOL 183 \f "Symbol" \s 10 \h
Allows for the use of single block. If this setting is turned off, the entire macro will be treated as a single block. Single block mode will have no effect on the macro execution.

[image: image24.wmf]24

IX. Conclusion

n

Use macro’s to simplify operation for the operator

n

Use macro assignments to manually test or troubleshoot

n

Use macro’s to control complex sub-assemblies that

involve discrete I/O

[image: image25.wmf]25

Problem #9

 - Final exam - Dog

dish problem

n

This is the final exam. The purpose of this exercise is to use the

knowledge gained earlier to create a complete macro.

n

You may pick either problem #9 or #10.

n

You are the owner of a dog dish factory. You make the size of the

dish to suit the customer. Your machinist does not know how to

program in G-code.

n

Create a program(s) that will make any size of rectangular dog dish.

For the purpose of this exercise, ignore the middle of the dish and

tool diameter (cutter comp).

n

The machinist is given the following information: x,y,z dimensions,

material (3 max, determines feedrate, spindle speed, and z

increment), and number of parts.

Problem #9:

· Delete programs O0010 and O9000 as they will no longer be needed. You may pick either Problem #9 or Problem #10.

· You are the maker of custom dog dishes. All dog dishes are rectangular. They can come in any size. They can be made from any one of several materials. Your machinist does not have a print and does not know how to program in G-code. He can only operate the mill. Provide a safety factor that will not allow the tool to be run into the table. The operator must be prompted to change parts after each part is complete. The operator must be notified when the run is complete. Air blast (#1124) is used to blast chips away. It should only be used during cuts, not rapids. Create a program that will make these parts. The operator is only given the dimensions (XxYxZ), material type, and quantity of parts. The operator is not allowed to change the g-code program when switching jobs.

· For this exercise, ignore cutter diameter/comp. You do not have to mill out the middle of the dish, only the perimeter. An empty tool holder will crash into the table at a distance of 4.5 inches from machine zero.

· Make two runs of parts. Run #1- 2x2x3, plastic, 3 parts. Run #2- 0.5x0.5x0.3, steel, 2 parts.

· Material specs:

Plastic

Aluminum

Steel
Spindle speed:

3000 rpm

2000

100

Z increment:

0.550”

0.245

0.09

feedrate:

300 in/min

160

25

tool #:

1

2

3

tool length:

1.”

1.375

1.75

· Useful G-codes:

G00-rapid

G01-feed

G53-offset for zero

G90-absolute

G91-incremental

M03 Snn-spindle forward

M05-spindle stop

M06 Tnn- tool change

[image: image26.wmf]26

Problem #10

 - Final Exam

(optional) - Tool changer problem

n

This exercise is optional. The purpose of this exercise is to use the

knowledge gained earlier to create a complete macro.

n

You may pick either problem #8 or #9.

n

You are an engineer creating a new tool changer. The motion for

the carousel is complete in M39. You must complete the tool

change shuttle motion and incorporate the M39.

n

The shuttle works exactly the same as for a standard vertical.

Problem #10:

· Delete programs O0010 and O9000 as they will no longer be needed. You may pick either Problem #9 or Problem #10.

· You are an engineer developing a new tool changer for the mill. The new tool changer has a unique carousel. The carousel has been added to the software using M39 Tnn. You need to run a complete tool change in order to test out the shuttle mechanism. The shuttle has not been integrated with the new M39 yet, so you must create a macro to integrate it. The shuttle works in the same fashion as a standard VF tool changer.

· Be sure to include safety factors such as protecting the motor from an indefinite stall, and alarming in an invalid state. If possible, check for broken/stuck switches. Use M06 Tnn to call the tool change. Be sure to include all of the spindle movements.

· Write a macro to run the tool changer of a vertical to simulate the M06. Use M39 Tnn for all carousel moves.

· Useful G-codes and variables:

M19-spindle orient

M82-tool unclamp

M86-tool clamp

#1000-shuttle in switch

#1001-shuttle out switch

#1108-shuttle in motor

#1109-shuttle out motor

Appendix A - G-codes

The following is a summary of the G codes.

Code:
Function:

G00
Rapid Motion

G01
Linear Interpolation Motion

G02
CW Interpolation Motion

G03
CCW Interpolation Motion

G04
Dwell

G09
Exact Stop

G10
Set Offsets

G12
CW Circular Pocket Milling (Yasnac)

G13
CCW Circular Pocket Milling (Yasnac)

G17
XY Plane Selection

G18
ZX Plane Selection

G19
YZ Plane Selection

G20
Select Inches

G21
Select Metric

G28
Return To Reference Point

G29
Return From Reference Point

G31
Feed Until Skip (optional)

G35
Automatic Tool Diameter Measurement (optional)

G36
Automatic Work Offset Measurement (optional)

G37
Automatic Tool Offset Measurement (optional)

G40
Cutter Comp Cancel

G41
2D Cutter Compensation Left

G42
2D Cutter Compensation Right

G43
Tool Length Compensation +

G44
Tool Length Compensation -

G47
Text Engraving

G49
G43/G44/G143 Cancel

G50
G51 Cancel

G51
Scaling (optional)

G52
Set Work Coordinate System G52 (Yasnac)

G52
Set Local Coordinate System (Fanuc)

G52
Set Local Coordinate System (HAAS)

G53
Non-Modal Machine Coordinate Selection

G54
Select Work Coordinate System 1

G55
Select Work Coordinate System 2

G56
Select Work Coordinate System 3

G57
Select Work Coordinate System 4

G58
Select Work Coordinate System 5

G59
Select Work Coordinate System 6

G60
Unidirectional Positioning

G61
Exact Stop Modal

G64
G61 Cancel

G65
Macro Subroutine Call (optional)

G68
Rotation (optional)

G69
G68 Cancel (optional)

G70
Bolt Hole Circle (Yasnac)

G71
Bolt Hole Arc (Yasnac)

G72
Bolt Holes Along an Angle (Yasnac)

G73
High Speed Peck Drill Canned Cycle

G74
Reverse Tap Canned Cycle

G76
Fine Boring Canned Cycle

G77
Back Bore Canned Cycle

G80
Canned Cycle Cancel

G81
Drill Canned Cycle

G82
Spot Drill Canned Cycle

G83
Normal Peck Drill Canned Cycle

G84
Tapping Canned Cycle

G85
Boring Canned Cycle

G86
Bore/Stop Canned Cycle

G87
Bore/Stop/Manual Retract Canned Cycle

G88
Bore/Dwell/Manual Retract Canned Cycle

G89
Bore/ Dwell Canned Cycle

G90
Absolute

G91
Incremental

G92
Set Work Coordinates - FANUC or HAAS

G92
Set Work Coordinates - YASNAC

G93
Inverse Time Feed Mode

G94
Feed Per Minute Mode

G98
Initial Point Return

G99
R Plane Return

G100
Cancel Mirror Image

G101
Enable Mirror Image

G102
Programmable Output To RS-232

G103
Limit Block Buffering

G107
Cylindrical Mapping

G110
Select Work Coordinate System 7

G111
Select Work Coordinate System 8

G112
Select Work Coordinate System 9

G113
Select Work Coordinate System 10

G114
Select Work Coordinate System 11

G115
Select Work Coordinate System 12

G116
Select Work Coordinate System 13

G117
Select Work Coordinate System 14

G118
Select Work Coordinate System 15

G119
Select Work Coordinate System 16

G120
Select Work Coordinate System 17

G121
Select Work Coordinate System 18

G122
Select Work Coordinate System 19

G123
Select Work Coordinate System 20

G124
Select Work Coordinate System 21

G125
Select Work Coordinate System 22

G126
Select Work Coordinate System 23

G127
Select Work Coordinate System 24

G128
Select Work Coordinate System 25

G129
Select Work Coordinate System 26

G136
Automatic Work Offset Center Measurement

G141
3D+ Cutter Compensation

G143
5 AX Tool Length Compensation (optional)

G150
General Purpose Pocket Milling

G174/184
General-purpose Rigid Tapping

G187
Accuracy Control for High Speed Machining

Appendix B - M-codes

Only one M code may be programmed per block of a program. All M codes are effective or cause an action to occur at the end of the block. However, when Parameter 278 bit "CNCR SPINDLE" is set to 1, an M03 (spindle start) will occur at the beginning of a block.

Code:
Function:

M00
Stop Program

M01
Optional Program Stop

M02
Program End

M03
Spindle Forward

M04
Spindle Reverse

M05
Spindle Stop

M06
Tool Change

M08
Coolant On

M09
Coolant Off

M10
Engage 4th Axis Brake

M11
Release 4th Axis Brake

M12
Engage 5th Axis Brake

M13
Release 5th Axis Brake

M16
Tool Change (same as M06)

M19
Orient Spindle

M21
M28 Optional Pulsed User M Function with Fin

M30
Prog End and Rewind

M31
Chip Conveyor Forward

M32
Chip Conveyor Reverse

M33
Chip Conveyor Stop

M34
Increment Coolant Spigot Position

M35
Decrement Coolant Spigot Position

M36
Pallet Rotate

M39
Rotate Tool Turret

M41
Low Gear Override

M42
High Gear Override

M50
Execute Pallet Change

M51-M58
Set Optional User M

M61-M68
Clear Optional User M

M75
Set G35 or G136 Reference Point

M76
Disable Displays

M77
Enable Displays

M78
Alarm if skip signal found

M79
Alarm if skip signal not found

M82
Tool Unclamp

M86
Tool Clamp

M88
Through the Spindle Coolant ON

M89
Through the Spindle Coolant OFF

M95
Sleep Mode

M96
Jump if no Input

M97
Local Sub-Program Call

M98
Sub Program Call

M99
Sub Program Return Or Loop

Appendix C – Alphabetic Addressing

Alphabetic Addressing

Address:
A
B
C
D
E
F
G
H
I
J
K
L
M

Variable:
1
2
3
7
8
9
-
11
4
5
6
-
13

Address:
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Variable:
-
-
-
17
18
19
20
21
22
23
24
25
26

Alternate Alphabetic Addressing

Address:
A
B
C
I
J
K
I
J
K
I
J
K

Variable:
1
2
3
4
5
6
7
8
9
10
11
12

Address:
I
J
K
I
J
K
I
J
K
I
J
K

Variable:
13
14
15
16
17
18
19
20
21
22
23
24

Address:
I
J
K
I
J
K
I
J
K

Variable:
25
26
27
28
29
30
31
32
33

Appendix D – Macro Variables

Variable #
Function

#0
Not a number (read only)

#1-#33
Macro call arguments (local variables)

#100-#199
General purpose variables saved on power off

#500-#699
General purpose variables saved on power off

#700-#749
Hidden variables for internal use only.

#800-#999
General purpose variables saved on power off

#1000-#1063
64 discrete inputs (read only)

#1080-#1087
Raw analog to digital inputs (read only)

#1090-#1098
Filtered analog to digital inputs (read only)

#1094
Spindle load with OEM spindle drive (read only)

#1098
Spindle load with Haas vector drive (read only)

#1100-#1155
56 discrete outputs

#2000-#2199
Tool length offsets

#2201-#2399
Tool length wear

#2401-#2599
Tool diameter/radius offsets

#2601-#2799
Tool diameter/radius wear

#3000
Programmable alarm

#3001
Millisecond timer

#3002
Hour timer

#3003
Single block suppression

#3004
Override control

#3006
Programmable stop with message

#3011
Year, month, day

#3012
Hour, minute, second

#3020
Power on timer (read only)

#3021
Cycle start timer (read only)

#3022
Feed timer (read only)

#3023
Present part timer (read only)

#3024
Last complete part timer (read only)

#3025
Previous part timer (read only)

#3026
Tool in spindle (read only)

#3027
Spindle RPM (read only)

#3901
M30 count 1

#3902
M30 count 2

#4000-#4021
Previous block group codes

#4101-#4126
Previous block address codes

NOTE: Mapping of 4101 to 4126 is the same as the alphabetic addressing of “Macro Arguments section”; e.g. the statement X1.3 sets variable #4124 to 1.3.

#5001-#5005
Previous block end position

#5021-#5025
Present machine coordinate position

#5041-#5045
Present work coordinate position

#5061-#5064
Present skip signal position

#5081-#5085
Present tool offset

#5201-#5205
Common offset

#5221-#5225
G54 work offsets

#5241-#5245
G55 work offsets

#5261-#5265
G56 work offsets

#5281-#5285
G57 work offsets

#5301-#5305
G58 work offsets

#5321-#5325
G59 work offsets

#5401-#5500
Tool feed timers (seconds)

#5501-#5600
Total tool timers (seconds)

#5601-#5699
Tool life monitor limit

#5701-#5800
Tool life monitor counter

#5801-#5900
Tool load monitor maximum load sensed so far

#5901-#6000
Tool load monitor limit

#6001-#6277
Settings (read only)

#6501-#6999
Parameters (read only)

NOTE: The low order bits of large values will not appear in the macro variables for settings and parameters

#7001-#7005
G110 additional work offsets

#7021-#7025
G111 additional work offsets

#7041-#7045
G112 additional work offsets

#7061-#7065
G113 additional work offsets

#7081-#7085
G114 additional work offsets

#7101-#7105
G115 additional work offsets

#7121-#7125
G116 additional work offsets

#7141-#7145
G117 additional work offsets

#7161-#7165
G118 additional work offsets

#7181-#7185
G119 additional work offsets

#7201-#7205
G120 additional work offsets

#7221-#7225
G121 additional work offsets

#7241-#7245
G122 additional work offsets

#7261-#7265
G123 additional work offsets

#7281-#7285
G124 additional work offsets

#7301-#7305
G125 additional work offsets

#7321-#7325
G126 additional work offsets

#7341-#7345
G127 additional work offsets

#7361-#7365
G128 additional work offsets

#7381-#7385
G129 additional work offsets

1
6

_1033284642.unknown

_1033284646.unknown

_1033284648.unknown

_1033284649.unknown

_1033284647.unknown

_1033284644.unknown

_1033284645.unknown

_1033284643.unknown

_1033284634.unknown

_1033284638.unknown

_1033284640.unknown

_1033284641.unknown

_1033284639.unknown

_1033284636.unknown

_1033284637.unknown

_1033284635.unknown

_1033284630.unknown

_1033284632.unknown

_1033284633.unknown

_1033284631.unknown

_1033284628.unknown

_1033284629.unknown

_1033284626.unknown

_1033284627.unknown

_1033284625.unknown

_1033284624.unknown

