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In this article we propose inferential procedures for a gamma distribution using the Wilson–Hilferty (WH)
normal approximation. Specifically, using the result that the cube root of a gamma random variable is
approximately normally distributed, we propose normal-based approaches for a gamma distribution for
(a) constructing prediction limits, one-sided tolerance limits, and tolerance intervals; (b) for obtaining
upper prediction limits for at least l of m observations from a gamma distribution at each of r locations;
and (c) assessing the reliability of a stress-strength model involving two independent gamma random
variables. For each problem, a normal-based approximate procedure is outlined, and its applicability and
validity for a gamma distribution are studied using Monte Carlo simulation. Our investigation shows that
the approximate procedures are very satisfactory for all of these problems. For each problem considered,
the results are illustrated using practical examples. Our overall conclusion is that the WH normal approx-
imation provides a simple, easy-to-use unified approach for addressing various problems for the gamma
distribution.

KEY WORDS: Confidence limits; Coverage probability; Quantile; Survival probability; Tolerance lim-
its; Wilson–Hilferty approximation.

1. INTRODUCTION

The gamma distribution is one of the waiting time distrib-
utions that may offer a good fit to time to failure data. Even
though this distribution is not widely used as a lifetime dis-
tribution model, it is used in many other important practi-
cal problems. For example, gamma-related distributions are
widely used to model the amounts of daily rainfall in a re-
gion (Das 1955; Stephenson et al. 1999) and to fit hydrolog-
ical data sets (Ashkar and Bobée 1988; Ashkar and Ouarda
1998; Aksoy 2000). In particular, Ashkar and Ouarda (1998)
used a two-parameter gamma distribution to fit annual maxi-
mum flood series to construct confidence intervals for a quan-
tile. Two-parameter gamma tolerance limits and prediction lim-
its are used in monitoring and control problems. For example,
in environmental monitoring, upper tolerance limits are often
constructed based on background data (regional surface wa-
ter, groundwater, or air monitoring data) and used to determine
whether a potential source of contamination (e.g., landfill by a
waste management facility, hazardous material storage facility,
or factory) has adversely impacted the environment (Bhaumik
and Gibbons 2006). The gamma distribution has also found a
number of applications in occupational and industrial hygiene.
In a recent article, Maxim et al. (2006) observed that the gamma
distribution is a possible distribution for concentrations of car-
bon/coke fibers in plants that produce green or calcined petro-
leum coke. In a study of tuberculosis risk and incidence, Ko,

Burge, Nardell, and Thompson (2001) noted that the gamma
distribution is appropriate for modeling the time spent in the
waiting room at primary care sites. Earlier, Nieuwenhuijsen et
al. (1995) used a gamma distribution to model determinants of
exposure to rat urinary aeroallergen.

In this article we consider the problems of constructing toler-
ance limits and prediction limits, as well as some related prob-
lems, for a two-parameter gamma distribution. Specifically, we
address the following problems: (a) constructing prediction lim-
its, one-sided tolerance limits, and tolerance intervals; (b) find-
ing upper prediction limits (UPLs) for at least l of m obser-
vations from a gamma distribution at each of r locations; and
(c) assessing the reliability of a stress-strength model involving
two independent gamma random variables. We first briefly re-
view the relevant literature and practical situations for each of
these problems.

Bain, Engelhardt, and Shiue (1984) proposed approximate
tolerance limits for a gamma distribution for the purpose of
finding lower tolerance limits for the endurance of deep-groove
ball bearings. They obtained these tolerance limits by assuming
first that the scale parameter b is known and the shape para-
meter a is unknown, and then replacing the scale parameter by
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its sample estimate. Ashkar and Ouarda (1998) developed an
approximate method of setting confidence limits for the gamma
quantile by transforming the tolerance limits for the normal dis-
tribution. Toward this end, they used the result that X is distrib-
uted as F−1

X (FY(Y)), where X is a gamma random variable with
the distribution function FX and Y is a normal random variable
with the distribution function FY . This transformation gener-
ally is not independent of the parameters, and eventually the
unknown parameters must be replaced by estimates to obtain
approximate tolerance limits. We note that the problem of set-
ting confidence limits for a gamma quantile is also of interest
for exposure data analysis in industrial hygiene applications,
because a parameter of interest in such applications is the pro-
portion of exposure measurements that exceed an occupational
exposure limit. Clearly, inference concerning this parameter can
be reduced to inference concerning a quantile. Aryal, Bhaumik,
Mathew, and Gibbons (2006) argued that the distribution of X
can be approximated by a normal distribution for large values
of a. Their suggestion is to use normal-based tolerance lim-
its if the maximum likelihood estimator (MLE) is â > 7. For
0 < â ≤ 7, they provided tabular values to construct tolerance
factors.

The second problem arises in monitoring and control prob-
lems where the future samples, to be collected periodically dur-
ing the operation of a process, are compared with some past
background data to determine whether a change in the process
has occurred on each sampling occasion. This type of process
monitoring is also practiced in groundwater quality detection
monitoring in the vicinity of hazardous waste management fa-
cilities (HWMFs). For example, to monitor groundwater qual-
ity, a series of samples from each of several monitoring wells
in the vicinity of a HWMF are often compared with statistical
prediction limits based on a sample of measurements obtained
from one or more upgradient sampling locations of the facility.
Davis and McNichols (1987) addressed this problem assuming
normality. Bhaumik and Gibbons (2006) argued that the nor-
mal model seldom offers a good fit for such environmental data,
and that the gamma distribution generally characterizes the data
well. Assuming a gamma distribution, these authors proposed
an approximate method for constructing prediction limits for
the aforementioned purpose.

The third problem that we address is assessing the reliabil-
ity in a stress-strength model. This model involves two inde-
pendent random variables, X1 and X2, where X1 represents the
strength variable of a component and X2 represents the stress
variable to which the component is subjected. If X1 ≤ X2, then
either the component fails or the system that uses the compo-
nent may malfunction. The reliability parameter R of the unit
can be expressed as R = P(X1 > X2). Assuming normality of
X1 and X2, Hall (1984), Reiser and Guttman (1986), and Guo
and Krishnamoorthy (2004) proposed approximate methods for
computing confidence limits for R. Several authors considered
the problem of estimating R when X1 and X2 are independent
gamma random variables. Basu (1981) and Constantine, Kar-
son, and Tse (1986, 1989, 1990) considered point and interval
estimation of R. As pointed out by Constantine et al. (1990),
many investigators assume that the shape parameters are known
and are integer-valued. If the shape parameters are known, then
it is not difficult to obtain exact confidence limits for R (see

Sec. 5). Several approximate procedures have been proposed
for situations when the shape parameters are unknown. Reiser
and Rocke (1993) compared several procedures for computing
lower limits for R and recommended two procedures, the delta
method on logits and the bootstrap percentile test inversion. It
should be noted that the parameter R arises in application areas
other than reliability. Wolfe and Hogg (1971) introduced R as
a general measure of difference; Hauck, Hyslop, and Anderson
(2000) considered its usefulness in clinical trial applications;
and Reiser (2000) proposed applications to the analysis of re-
ceiver operating characteristic curves.

In this article we propose simple approximate solutions for
the problems mentioned in the preceding paragraphs using
a normal approximation due to Wilson and Hilferty (1931).
Those authors developed the normal approximation for a chi-
squared random variable, from which the normal approxima-
tion of the gamma distribution can be easily derived for the chi-
squared distribution. Specifically, the Wilson–Hilferty (WH)
approximation states that if X follows a two-parameter gamma
distribution, then the distribution of X1/3 can be approximated
by a normal distribution. We investigated the accuracy of this
approximation and made a comparison with a more recent ap-
proximation due to Hawkins and Wixley (1986), which states
that X1/4 can be approximated by a normal distribution. Specif-
ically, we compared the quantiles of a gamma distribution with
those obtained using the WH and Hawkins–Wixley (HW) ap-
proximations. Such a comparison shows that the normal ap-
proximations are quite accurate, and the that WH approxima-
tion is preferred overall. Because prediction intervals, tolerance
intervals, stress-strength reliability problems, and other aspects
have been well investigated for the normal distribution, we can
immediately adopt the corresponding results for the gamma dis-
tribution by applying the WH normal approximation. This is
precisely what we have done in the present article. Furthermore,
in each case we have evaluated the performance of the result-
ing approximate procedures using appropriate simulations. The
overall conclusion is that the normal-based approximate proce-
dures are quite accurate for the gamma distribution.

We want to point out that the normal approximations ap-
pear to be not useful for carrying out inferences concerning the
gamma parameters. Rather, the approximations become rele-
vant and useful for the computation of prediction intervals and
tolerance intervals and for inference concerning stress-strength
reliability parameters. Indeed, for such problems, the approx-
imations provide a simple, accurate, and unified methodology
for the two-parameter gamma distribution.

2. NORMAL APPROXIMATIONS AND THE
PROPOSED METHOD

Let Xa denote a gamma variable with shape parameter a
and scale parameter 1. Wilson and Hilferty (1931) provided a
normal approximation to the cube root of a chi-squared vari-
able using the moment-matching method. As Xa is distributed
as χ2

2a/2, we explain the moment-matching approach for ap-
proximating the distribution of a gamma variate raised to the λ

power. Toward this end, we note that the mean and variance of
Xλ

a are given by

μλ = �(a + λ)

�(a)
and σ 2

λ = �(a + 2λ)

�(a)
− μ2

λ. (1)
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Wilson and Hilferty’s (1931) choice for λ is 1
3 , and in this case

X1/3
a ∼ N(μ1/3, σ

2
1/3) approximately (see also Hernandez and

Johnson 1980, sec. 3.2, for a justification of the choice λ = 1
3 ).

Hawkins and Wixley (1986) have argued that the approximation
can be improved for smaller values of a by using λ = 1

4 .
In what follows, we compare the foregoing two methods

for approximating gamma quantiles. Note that both aforemen-
tioned articles provided approximations to the mean and vari-
ance in (1) to avoid computation of the gamma functions. How-
ever, to evaluate the merits of these approximations, we use
the exact expressions in (1). Note that the WH method ap-
proximates the pth quantile of a gamma(a,1) distribution as
max{0, (μ1/3 + zpσ1/3)

3}, whereas the HW method approxi-
mates it as [max{0,μ1/4 + zpσ1/4}]4.

Table 1 presents the quantiles of a gamma(a,1) distribution
for values a = 1,2,5, and 20 based on an exact method (IMSL
routine GAMIN) and the WH and HW approximations. We ob-
serve from the reported quantiles that for smaller values of a,
the HW approximation performs better than the WH approxi-
mation at the lower quantiles, whereas the converse is true at the
upper quantiles. In general, the WH approximation performs
better than the HW approximation even for smaller values of a
(e.g., a = 1 and 2, p = .05 and .10).

In view of the foregoing discussion and comparison, we use
the WH cube root approximation to develop inferential proce-
dures for a gamma distribution with the shape parameter a and
the scale parameter b, say, gamma(a,b). We first note that if
Xa,b denotes such a gamma random variable, then Xa,b is dis-
tributed as bXa. The WH approximation now states that X1/3

a,b is
approximately normal with mean and variance

μ = b1/3�(a + 1/3)

�(a)

and

σ 2 = b2/3�(a + 2/3)

�(a)
− μ2.

In the procedures developed in this article, we ignore the
functional forms of μ and σ 2 as functions of a and b.

Thus if X1, . . . ,Xn is a sample from a gamma(a,b) distribu-
tion, then we simply consider the transformed sample Y1 =
X1/3

1 , . . . ,Yn = X1/3
n as a sample from a normal distribution

with an arbitrary mean μ and arbitrary variance σ 2, and then
develop tolerance intervals, prediction intervals, and so on, as
though we have a sample from a normal distribution. In par-
ticular, this will result in procedures that are not functions of
the complete sufficient statistics for the gamma distribution,
namely the arithmetic mean and the geometric mean among
X1, . . . ,Xn. Here we ignore this aspect in view of the accuracy
of the WH approximation and the simplicity of the normal-
based procedures.

3. PREDICTION AND TOLERANCE LIMITS

Let X1, . . . ,Xn be a sample from a gamma(a,b) distribution.
To apply the WH approximation, write Yi = X1/3

i , i = 1, . . . ,n.
Let

Ȳ = 1

n

n∑

i=1

Yi and S2
y = 1

n − 1

n∑

i=1

(Yi − Ȳ)2.

3.1 Prediction Limits

A 1 − α UPL for a future measurement is given by

PLu = Ȳ + tn−1,1−αSy

√
1 + 1

n
, (2)

where tm,c denotes the cth quantile of the Student t distribution
with degrees of freedom df = m. Then (PLu)

3 is an approxi-
mate 1 − α UPL for a future observation from the gamma dis-
tribution. The lower prediction limit (LPL) can be obtained by
replacing the plus sign in (2) by the minus sign. Note that if the
LPL so computed turns out to be negative, then the LPL will
be taken to be equal to 0; this convention also applies to the
tolerance limits discussed later.

Table 1. WH and HW approximations to gamma(a,1) quantiles

a = 1 a = 2 a = 5 a = 20

p Exact WH HW Exact WH HW Exact WH HW Exact WH HW

.001 .0010 0 .0002 .0454 .0218 .0500 .7394 .6936 .8016 8.9582 8.9300 9.1401

.010 .0101 .0026 .0098 .1486 .1285 .1636 1.2791 1.2587 1.3354 11.0821 11.0760 11.1965

.050 .0513 .0463 .0568 .3554 .3513 .3732 1.9701 1.9683 2.0044 13.2547 13.2591 13.3078

.100 .1054 .1086 .1136 .5318 .5368 .5450 2.4326 2.4371 2.4501 14.5253 14.5320 14.5484

.200 .2231 .2381 .2298 .8244 .8371 .8255 3.0895 3.0977 3.0847 16.1725 16.1793 16.1644

.300 .3567 .3776 .3571 1.0973 1.1119 1.0865 3.6336 3.6417 3.6136 17.4360 17.4414 17.4107

.500 .6931 .7121 .6750 1.6783 1.6879 1.6479 4.6709 4.6746 4.6334 19.6677 19.6688 19.6271

.700 1.2040 1.2017 1.1687 2.4392 2.4346 2.4029 5.8904 5.8862 5.8552 22.0824 22.0782 22.0488

.800 1.6094 1.5858 1.5759 2.9943 2.9786 2.9704 6.7210 6.7121 6.7028 23.6343 23.6271 23.6185

.900 2.3026 2.2425 2.3059 3.8897 3.8591 3.9168 7.9936 7.9802 8.0267 25.9025 25.8926 25.9322

.950 2.9957 2.9047 3.0791 4.7439 4.7051 4.8554 9.1535 9.1405 9.2602 27.8792 27.8691 27.9677

.990 4.6052 4.4758 5.0350 6.6384 6.6090 7.0594 11.6046 11.6104 11.9514 31.8454 31.8433 32.1066

.999 6.9078 6.8149 8.2000 9.2334 9.2860 10.3403 14.7942 14.8666 15.6226 36.7010 36.7277 37.2742
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3.2 Tolerance Limits

Let p denote the content and γ denote the confidence level
of a tolerance interval. Such an interval should contain a pro-
portion of at least p of the population with 100γ % confidence,
and we refer to the interval simply as a (p, γ ) tolerance interval.
(For details, especially in the context of the normal distribution,
see Guttman 1970.)

If U is a (p, γ ) upper tolerance limit based on Ȳ and S2
y ,

then U3 is an approximate (p, γ ) upper tolerance limit for the
gamma(a,b) distribution. Note that for the normal distribution,
a (p, γ ) upper tolerance limit U is given by (see Guttman 1970)

U = Ȳ + c1Sy, with c1 = 1√
n

tn−1,γ (zp
√

n), (3)

where zp is the pth quantile of the standard normal distribution
and tm,α(δ) denotes the αth quantile of a noncentral t distrib-
ution with df = m and noncentrality parameter δ. The quantity
c1 is referred to as a tolerance factor. A lower tolerance limit
can be obtained by replacing the plus sign in (3) by the minus
sign. Note that a (p, γ ) upper tolerance limit also provides a
100γ % upper confidence limit for the pth quantile. Similarly, a
(p, γ ) lower tolerance limit also provides a 100γ % lower con-
fidence limit for the (1 − p)th quantile. Thus, in particular, the
upper and lower tolerance limits derived earlier also provide
approximate confidence limits for the appropriate percentile of
the gamma distribution. Such confidence limits were required
in the application discussed by Ashkar and Ouarda (1998).

An exact two-sided tolerance interval for the normal distri-
bution is given by Ȳ ± cSy, where c is the tolerance factor.
Odeh (1978) computed the exact tolerance factor c for n =
2(1)98,100; p = 75, .90, .95, .975, .99, .995, .999; and γ =
.5, .75, .90, .95, .975, .99, .995. Eberhardt, Mee, and Reeve
(1989) provided a Fortran program to compute the values of c.
An online calculator from the UCLA Department of Statistics
(available at http://calculators.stat.ucla.edu/cdf ) can be used
to compute the percentiles of a noncentral t distribution. The
PC calculator that accompanies the book by Krishnamoorthy
(2006) computes the one-sided limits and exact tolerance inter-
vals for a normal distribution. This calculator is free and can be
downloaded from http://www.ucs.louisiana.edu/∼kxk4695.

An accurate approximation for the factor c, which is due to
Wald and Wolfowitz (1946), is given by

c =
(

(n − 1)χ2
1,p(1/n)

χ2
n−1,1−γ

)1/2

,

where χ2
1,p(1/n) denotes the pth quantile of a noncentral chi-

squared distribution with df = 1 and noncentrality parameter
1/n and χ2

n−1,1−γ denotes the (1 − γ )th quantile of a central
chi-squared distribution with df = n − 1, the df associated with
the sample variance. This approximation is extremely satisfac-
tory even for small sample sizes (as small as 3) if p and γ are
≥ .9.

3.3 Assessing Survival Probability

Suppose that we want to estimate the survival probability (re-
liability) at time t based on a sample of lifetime data X1, . . . ,Xn

from a gamma distribution. Because the survival probability

is St = P(X > t) = P(X1/3 > t1/3), the normal approximation
method can be used to make inferences about St. Indeed, the
one-sided tolerance limits discussed earlier can be used to find
a lower confidence limit for St. For example, if a (p, γ ) lower
tolerance limit for the gamma(a,b) distribution is >t1/3, then
we can conclude that St is at least p with confidence γ . Con-
sequently, an approximate one-sided 100γ % lower confidence
limit for St is given by

max

{
p : Ȳ − 1√

n
tn−1,γ (zp

√
n)Sy > t1/3

}
. (4)

Using the argument that the γ th quantile of a noncentral t dis-
tribution is an increasing function of the noncentrality parame-
ter, we can state that the lower tolerance limit is a decreasing
function of p. Therefore, a lower confidence limit for St can be
obtained as the solution (with respect to p) to the equation

tn−1,γ (zp
√

n) = Ȳ − t1/3

Sy/
√

n
. (5)

Once n, γ , and the quantity on the right side of (5) are given,
the foregoing equation can be solved using the PC calculators
mentioned in the preceding section (see Sec. 3.5 for an exam-
ple).

3.4 Validity of the Normal Approximation for
Constructing Gamma Tolerance Limits

Using Monte Carlo simulation, we evaluated the accuracy of
the foregoing approximate procedures for computing tolerance
limits for the gamma distribution. We carried out the simulation
study as follows. For a given shape parameter a, n random num-
bers were generated from the gamma(a,1) distribution. After
taking the cube root, normal-based (p, γ ) upper tolerance limits
were constructed. The simulation was done with 100,000 runs,
and the proportion of the 100,000 upper limits that were greater
than the pth quantile of gamma(a,1) was computed. For a good
procedure, this proportion (i.e., coverage probability) should be
close to the nominal confidence level γ . The coverage probabil-
ities of two-sided tolerance intervals were estimated similarly.
Table 2 gives the estimated coverage probabilities of upper tol-
erance limits based on the WH approximation for n = 3,7, and
12; (p, γ ) in {.9, .95, .99}; and a few values of the shape para-
meter ranging from .5 to 9. Table 3 gives estimated coverage
probabilities of two-sided tolerance intervals. It is evident from
the tabulated values in Tables 2 and 3 that the WH approxima-
tion provides satisfactory coverage probabilities except when a
is small.

It should be noted that a (p, γ ) upper tolerance limit based
on the cube root transformation is indeed a γ -level upper confi-
dence limit for Ap = (μ1/3 + zpσ1/3)

3, where μλ and σλ are
as defined in (1), which is an approximation to the true up-
per quantile Qp of a gamma(a,1) distribution. Because Ap is
smaller than Qp for smaller values of a (see, e.g., the quantiles
in Table 1 for a = 1 and p ≥ .80), in this case the coverage prob-
abilities of an upper tolerance limit are expected to be smaller
than the nominal level γ . On the other hand, the coverage prob-
abilities of a lower tolerance limit are expected to be larger than
the nominal level γ for smaller values of a, because in this case
lower approximate quantiles are smaller than the corresponding
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Table 2. Estimated coverage probabilities of the upper tolerance limits based on the WH approximation with
confidence levels γ1 = .90, γ2 = .95, and γ3 = .99

p = .90 p = .95 p = .99

a γ̂1 γ̂2 γ̂3 γ̂1 γ̂2 γ̂3 γ̂1 γ̂2 γ̂3

n = 3
.5 .875 .935 .987 .878 .936 .987 .881 .939 .987

1.5 .898 .949 .990 .898 .949 .990 .898 .949 .989
3.0 .899 .949 .990 .900 .950 .991 .900 .951 .990
9.0 .901 .950 .990 .900 .951 .990 .900 .950 .990

n = 7
.5 .859 .923 .982 .868 .923 .982 .862 .926 .984

1.5 .893 .946 .989 .895 .948 .990 .898 .949 .990
3.0 .898 .949 .990 .901 .950 .990 .901 .950 .990
9.0 .899 .949 .990 .901 .950 .990 .902 .951 .991

n = 12
.5 .857 .925 .988 .865 .932 .978 .878 .937 .980

1.5 .891 .943 .988 .892 .945 .989 .899 .949 .990
3.0 .897 .949 .990 .899 .949 .990 .902 .952 .990
9.0 .901 .950 .990 .900 .949 .989 .903 .952 .990

true gamma quantiles (see the quantiles in Table 1 for a = 1 and
2 and p ≤ .05).

The foregoing findings indicate that two-sided tolerance in-
tervals based on the WH approximation should be satisfactory
regardless of the values of a. This is also evident from the nu-
merical results in Table 3. More detailed tables (similar to Ta-
bles 2 and 3), available in the work of Mukherjee (2007), further
confirm our findings.

3.5 An Example

In this example we use the data reported by Gibbons (1994,
p. 261), which were also used for illustrative purposes by Aryal
et al. (2006). The measurements represent alkalinity concentra-
tions in groundwater obtained from a “greenfield” site (i.e., the

site of a waste disposal landfill before disposal of waste) and
are reproduced here in Table 4.

To apply the WH approximation, define Yi = X1/3
i , i =

1, . . . ,27. The mean is Ȳ = 3.8274, and the standard deviation
is Sy = .4298.

Tolerance Limits. Table 5 presents 95% one-sided tolerance
limits and two-sided tolerance intervals along with the corre-
sponding tolerance factors.

Prediction Limits. Using formula (2), we computed the
90% prediction limit as 85.353 mg/L and the 95% prediction
limit as 95.690 mg/L.

Probability of Exceeding a Threshold Value. Suppose that
we want to find a 95% lower limit for the probability that
a sample alkalinity concentration exceeds 41 mg/L, that is,

Table 3. Estimated coverage probabilities of two-sided tolerance intervals based on the WH approximation
with confidence levels γ1 = .90, γ2 = .95, and γ3 = .99

p = .90 p = .95 p = .99

a γ̂1 γ̂2 γ̂3 γ̂1 γ̂2 γ̂3 γ̂1 γ̂2 γ̂3

n = 3
.5 .904 .951 .990 .907 .953 .990 .911 .955 .991

1.5 .904 .952 .991 .904 .952 .990 .910 .955 .991
3.0 .901 .952 .991 .905 .952 .991 .907 .953 .990
9.0 .903 .952 .991 .902 .952 .990 .904 .953 .990

n = 7
.5 .910 .953 .990 .913 .955 .990 .917 .957 .991

1.5 .903 .952 .990 .907 .953 .991 .917 .959 .991
3.0 .900 .950 .990 .903 .951 .990 .910 .955 .991
9.0 .899 .949 .990 .901 .950 .989 .903 .951 .990

n = 12
.5 .920 .958 .991 .922 .959 .991 .917 .956 .991

1.5 .903 .952 .990 .908 .955 .991 .924 .962 .993
3.0 .901 .950 .990 .903 .951 .990 .912 .956 .992
9.0 .898 .948 .989 .901 .950 .990 .902 .950 .990
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Table 4. Alkalinity concentrations in groundwater

X: 58 82 42 28 118 96 49 54 42 51
66 89 40 51 54 55 59 42 39 40
60 63 59 70 32 52 79

P(Y > 411/3). Using (5), we get

t26,.95(zp
√

27) = 3.8274 − 411/3

.4298/
√

27
= 4.584.

Solving for the noncentrality parameter, we get zp
√

27 = 2.601.
This implies that zp = .5006 or p = .692. Thus the probability
that alkalinity concentration exceeds 41 mg/L in a sample is at
least .692 with confidence 95%.

4. ONE–SIDED PREDICTION LIMITS FOR AT LEAST
l OF m OBSERVATIONS FROM A GAMMA

DISTRIBUTION AT EACH OF r LOCATIONS

As already mentioned in Section 1, this problem arises,
for example, in groundwater quality detection in the vicinity
of HWMFs. For example, in groundwater quality monitoring
near waste disposal facilities, a series of m sample observations
from each of r monitoring wells located hydraulically down-
gradient of the HWMF are often compared with statistical pre-
diction limits based on n measurements obtained from one or
more upgradient sampling locations. Given a random sample of
size n, the statistical problem is to construct an UPL so that l of
m sample values are below the limit at each of r downgradient
monitoring wells. Discussions of this problem and strategies for
monitoring groundwater quality have been provided by Davis
and McNichols (1987), Gibbons (1994), Gibbons and Coleman
(2001), and Bhaumik and Gibbons (2006). Davis and McNi-
chols (1987) developed an exact method for constructing the
UPL assuming normality, and Bhaumik and Gibbons (2006)
proposed an approximate method assuming a gamma distrib-
ution.

4.1 Normal-Based Upper Prediction Limit

We outline Davis and McNichols’ (1987) approach for nor-
mally distributed samples. Let Y1, . . . ,Yn be a sample from
a normal population, and let Ȳ and Sy denote the mean and
standard deviation of Y1, . . . ,Yn. Then the UPL is of the form
Ȳ + kuSy, where ku is chosen so that at least l of m future obser-
vations are below Ȳ + kuSy on each of r locations, with prob-
ability γ . Davis and McNichols showed that the factor ku for

Table 5. Tolerance limits based on the WH approximation

Factor for Lower Upper Factor for Two-sided
(p, γ ) one-sided limit limit two-sided tolerance interval

(.9, .95) 1.8114 28.341 97.7129 2.1841 (24.104, 108.27)
(.95, .95) 2.2601 23.296 110.507 2.6011 (19.890, 120.95)
(.99, .95) 3.1165 15.400 137.94 3.4146 (13.141, 148.46)

constructing a γ -level UPL can be obtained as the solution of
∫ 1

0
F
(√

nku;n − 1,
√

π
−1(x)
)
r(I(x; l,m + 1 − l))r−1

× xl−1(1 − x)m−l

B(l,m + 1 − l)
dx = γ, (6)

where F(x;ν, δ) denotes the cumulative distribution function
(cdf) of the noncentral t random variable with df = ν and the
noncentrality parameter δ, B(a,b) denotes the usual beta func-
tion, and I(x;a,b) denotes the cdf of a beta random variable
with parameters a and b. Davis and McNichols tabulated val-
ues of ku for some selected values of (n, r, l) and for γ = .95.

Assuming that X1, . . . ,Xn is a sample from a gamma dis-
tribution, we apply the WH approximation. Setting Yi = X1/3

i ,
i = 1, . . . ,n, we first construct the normal-based UPL based on
Yi’s, and we can then use the cubic power of the UPL as a γ -
level UPL limit for the gamma distribution. Apart from simplic-
ity, another advantage of the normal approach is that the factor
ku does not depend on any sample statistic, whereas the factor k
based on the approach of Bhaumik and Gibbons depends on the
MLE of a, which makes the tabulation of tolerance factors diffi-
cult. Another advantage is that we can compute the UPL using
the already tabulated values of ku given by Davis and McNi-
chols (1987).

4.2 Accuracy of the Normal Approximation

To appraise the accuracy of the normal-based UPL given
previously using the WH approximation, we estimated the
coverage probabilities using Monte Carlo simulation. We first
generated n random numbers from a gamma(a,1) distribu-
tion. After transforming the random numbers by taking cube
root, we constructed normal-based UPL U. Then we gen-
erated r sets of m random numbers, say, Xij, j = 1, . . . ,m,
i = 1, . . . , r, from the gamma(a,1) distribution. We computed
X∗ = max{X1(l), . . . ,Xr(l)}, where Xi(l) is the lth smallest of Xij

for each i. We repeated the procedure 100,000 times, and used
the proportion of times X∗ less than U3 as an estimate of the
coverage probability. The accuracy of the normal approxima-
tion can be judged by the closeness of the coverage probabilities
to the nominal level γ .

Table 6 gives the estimated coverage probabilities of 95%
UPLs for values of the shape parameter a from the set
{.4, .8,1.3,2,5}. The values of (r, l,m, ku) are selected from
Table 2 (n = 6) and table 4 (n = 15) of Davis and McNichols
(1987). We observe from the values in Table 5 that the coverage
probabilities are very close to (or coincide with) the nominal
confidence level .95, showing the accuracy of the WH normal
approximation for this problem.

4.3 An Example

To illustrate our method described earlier, we consider the
data given in table 1 of Bhaumik and Gibbons (2006). The
data, reproduced here in Table 7, represent vinyl chloride con-
centrations collected from clean upgradient monitoring wells.
A quantile–quantile plot of Bhaumik and Gibbons showed an
excellent fit of these data to a gamma distribution.
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Table 6. Coverage probabilities of UPLs that contain at least l of m observations at each of r locations

n = 6 n = 12

a a

r l m ku .4 .8 1.3 2 5 r l m ku .4 .8 1.3 2 5

1 1 2 1.07 .95 .95 .95 .95 .95 1 1 2 .87 .95 .95 .95 .95 .95
1 1 3 .58 .95 .95 .95 .95 .95 1 1 3 .43 .96 .95 .95 .95 .95
1 2 3 1.58 .94 .95 .95 .95 .95 1 2 4 .81 .95 .95 .95 .95 .95
1 1 4 .29 .96 .95 .95 .95 .95 1 2 6 .32 .96 .95 .95 .95 .95
1 2 5 .72 .95 .95 .95 .95 .95 2 1 2 1.15 .94 .95 .95 .95 .95
1 2 6 .50 .96 .95 .95 .95 .95 2 1 3 .66 .95 .95 .95 .95 .95
1 3 6 1.01 .95 .95 .95 .95 .95 2 2 5 .72 .95 .95 .95 .95 .95
2 1 2 1.43 .94 .95 .95 .95 .95 2 2 6 .50 .96 .95 .95 .95 .95
2 1 3 .87 .95 .95 .95 .95 .95 4 1 2 1.41 .93 .94 .95 .95 .95
2 2 3 1.96 .93 .94 .95 .95 .95 4 1 3 .88 .95 .95 .95 .95 .95
2 1 4 .54 .95 .95 .95 .95 .95 4 1 4 .56 .95 .95 .95 .95 .95
2 2 4 1.35 .94 .95 .95 .95 .95 4 2 5 .90 .95 .95 .95 .95 .95
2 1 5 .32 .96 .95 .95 .95 .95 4 2 6 .67 .95 .95 .95 .95 .95
2 2 5 .98 .95 .95 .95 .95 .95 8 1 2 1.66 .93 .94 .95 .95 .95
2 2 6 .73 .95 .95 .95 .95 .95 8 1 3 1.09 .94 .95 .95 .95 .95
2 3 6 1.28 .94 .95 .95 .95 .95 8 1 4 .74 .95 .95 .95 .95 .95
4 1 2 1.80 .93 .94 .95 .95 .95 8 1 5 .50 .96 .95 .95 .95 .95
8 1 3 1.45 .94 .95 .95 .95 .95 8 2 6 .82 .95 .95 .95 .95 .95
8 1 6 .54 .96 .95 .95 .95 .95 16 1 2 1.90 .92 .94 .95 .95 .95
8 2 6 1.17 .94 .95 .95 .95 .95 16 1 3 1.28 .93 .94 .95 .95 .95

16 1 3 1.73 .93 .94 .95 .95 .95 16 1 4 .91 .95 .95 .95 .95 .95
16 2 5 1.73 .93 .94 .95 .95 .95 16 2 4 1.63 .92 .94 .95 .95 .95
16 1 4 1.27 .94 .95 .95 .95 .95 16 2 5 1.24 .93 .94 .95 .95 .95
16 1 6 .73 .95 .95 .95 .95 .95 16 1 6 .47 .96 .95 .95 .95 .95

We computed the mean and standard deviation of the cube
root data as Ȳ = 1.1022 and Sy = .3999. The critical values
ku for computing UPLs when n = 34 were not given by Davis
and McNichols (1987), so we computed them using the integral
equation in (6). To compare the normal-based UPLs with those
of Bhaumik and Gibbons, we chose the same combinations of
(r, l,m) as given in their article. The normal-based approximate
prediction limits, along with those of Bhaumik and Gibbons
(2006), are given in Table 8.

For all of the cases considered in Table 8, the normal-based
approximate limits using the WH approximation and the ap-
proximate limits due to Bhaumik and Gibbons (2006) are in
close agreement.

5. STRESS–STRENGTH RELIABILITY INVOLVING
TWO INDEPENDENT GAMMA RANDOM VARIABLES

Let X1 ∼ gamma(a1,b1) independent of X2 ∼ gamma(a2,

b2). If X1 is a strength variable and X2 is a stress variable, then

Table 7. Vinyl chloride data from clean upgradient groundwater
monitoring wells in µg/L

5.1 2.4 .4 .5 2.5 .1 6.8 1.2 .5 .6
5.3 2.3 1.8 1.2 1.3 1.1 .9 3.2 1.0 .9
.4 .6 8.0 .4 2.7 .2 2.0 .2 .5 .8

2.0 2.9 .1 4.0

the reliability parameter is given by

R = P(X1 > X2) = P

(
F2a1,2a2 >

a2b2

a1b1

)
, (7)

where Fm,n denotes the F random variable with df = (m,n).
If a1 and a2 are known, then inferential procedures can be ob-
tained readily (see Kotz, Lumelskii, and Pensky 2003, p. 114).
No exact procedure is available if a1 and a2 are unknown.

Suppose that we are interested in testing

H0 : R ≤ R0 versus Ha : R > R0, (8)

where R0 is a specified probability. To use the WH approxima-
tion, we note that R = P(X1/3

1 − X1/3
2 > 0). Thus a level-α test

rejects the null hypothesis when a (R0,1 − α) lower tolerance
limit for the distribution of X1/3

1 − X1/3
2 is positive. Because

X1/3
1 and X1/3

2 are approximately normally distributed, normal-

based tolerance limits for X1/3
1 − X1/3

2 can be used to test the
above hypotheses.

Table 8. 95% UPLs for the vinyl chloride data

r l m ku UPL = Ȳ + kuSy (UPL)3 Bhaumik–Gibbons

1 1 2 .807 1.425 2.893 2.931
10 1 2 1.577 1.733 5.203 5.224
10 1 3 1.033 1.515 3.479 3.521
10 2 3 1.879 1.854 6.369 6.330
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5.1 One-Sided Tolerance Limits for the Distribution of
the Difference Between Two Independent
Normal Variables

Approximate methods of constructing one-sided tolerance
limits (or estimating the reliability) for stress-strength reliabil-
ity involving two independent normal random variables have
been given Hall (1984) and Reiser and Guttman (1986). Re-
cently, Guo and Krishnamoorthy (2004) suggested a modifica-
tion of Hall’s approach that provides satisfactory tolerance lim-
its even for small samples. We outline their method here.

We now explain the application of the WH normal ap-
proximation. Let Ȳi and S2

i denote the mean and variance of

Yi1, . . . ,Yini , where Yij = X1/3
ij , j = 1, . . . ,ni, i = 1,2. Further-

more, let

q̂1 = (n2 − 3)S2
1

(n2 − 1)S2
2

,

m1 = n1(1 + q̂1)

q̂1 + n1/n2
, and (9)

f1 = (n1 − 1)(q̂1 + 1)2

q̂2
1 + (n1 − 1)/(n2 − 1)

.

Then a (R0,1 − α) lower tolerance limit due to Hall (1984) is
given by

L1R0 = Ȳd − tf1,1−α

(
zR0

√
m1

)
√

S2
1 + S2

2

m1
, (10)

where Ȳd = Ȳ1 − Ȳ2. Using the fact that tm(δ) is stochastically
increasing with respect to δ, it can be easily verified that a 1−α

lower limit for R is the value of R1L that satisfies

tf1,1−α

(
zR1L

√
m1

) =
√

m1Ȳd√
S2

1 + S2
2

. (11)

Note that the H0 in (8) will be rejected if L1R0 > 0 or, equiva-
lently,

tf1,1−α

(
zR0

√
m1

)
<

√
m1Ȳd√

S2
1 + S2

2

,

or, equivalently, if the p value is

P1 = P

(
tf1

(
zR0

√
m1

)
>

√
m1Ȳd√

S2
1 + S2

2

)
< α. (12)

Because the foregoing quantities depend on the labeling of the
variables, we can get other tolerance limits, R2L, by defining

q̂2 = (n1 − 3)S2
2

(n1 − 1)S2
1

,

m2 = n2(1 + q̂2)

q̂2 + n2/n1
, and (13)

f2 = (n2 − 1)(q̂2 + 1)2

q̂2
2 + (n2 − 1)/(n1 − 1)

.

Then R2L that satisfies

tf2,γ
(
zR2L

√
m2

) =
√

m2Ȳd√
S2

1 + S2
2

, (14)

is also an approximate (1−α)-level lower limit for R. Based on
extensive simulation studies, Guo and Krishnamoorthy (2004)
found that

RL = min{R1L,R2L} (15)

is a satisfactory 1 − α lower confidence limit for R in terms of
providing better coverage probabilities compared with both R1L
and R2L.

For hypothesis testing, we can compute another p value, say,
P2, by replacing (m1, f1) in (12) by (m2, f2). It turns out that
the test that rejects H0 when max{P1,P2} < α has better size
properties than the test based on either P1 or P2.

5.2 Monte Carlo Estimates of the Sizes

To assess the validity of the WH approximation for the stress-
strength model involving gamma random variables, we esti-
mated the sizes of the test based on max{P1,P2}. We gener-
ated n1 random numbers from a gamma(a1,1) distribution and
n2 random numbers from a gamma(a2,1) distribution. After
taking cube root of the generated samples, we computed the
p value as max{P1,P2}, following the procedure outlined ear-
lier. We repeated this 10,000 times, and used the proportion of
the p values which were less than α as an estimate of the size of
the test. The estimated sizes [as function of R in (7)] are given
in Table 9 when a2 = 1. We observe from the estimated sizes
that for the values of R and sample sizes considered here, the
WH normal approximation procedure is very satisfactory.

We also estimated the sizes for a few other values of a2 for
the sample sizes considered in Table 9. The estimated sizes
were similar to those given in Table 9, and so we do not report
them here.

5.3 An Illustrative Example

We use the simulated data given by Basu (1981) to illus-
trate the computation of a lower confidence limit for the stress-
strength reliability parameter R. The data are reproduced here
in Table 10. The same data were also used later by other authors
(e.g., Reiser and Rocke 1993) to find a lower limit for R.

After taking the cube root transformation, we get Ȳ1 =
1.02135, S2

1 = .110025, Ȳ2 = .35363, and S2
2 = .006823. Other

quantities are

n1 = 15, n2 = 15,

q̂1 = 13.82174, q̂2 = .053155,

m̂1 = 15, m̂2 = 15,

and

f̂1 = 16.01525, f̂2 = 15.4841.

To find a 95% lower confidence limit for R, we used (11) to
get t16.0153,.95(zR1L

√
15) = 7.565. Solving this equation for the

noncentrality parameter, we get zR1L

√
15 = 4.7611. This im-

plies that ZR1L = 1.2293 or R1L = .891. Similarly, using (14),
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Table 9. Sizes of the test for H0 : R ≤ R0 versus Ha : R > R0; α = .05

R = R0 n1 = n2 = 10 n1 = 10,n2 = 15 n1 = n2 = 15 n1 = 20,n2 = 10 n1 = n2 = 20

.129 .058 .063 .056 .054 .052

.293 .056 .049 .054 .046 .054

.500 .050 .045 .048 .045 .049

.646 .049 .050 .051 .050 .047

.750 .052 .052 .048 .049 .050

.823 .050 .051 .050 .052 .051

.875 .053 .050 .054 .049 .053

.912 .050 .048 .052 .051 .055

.938 .052 .048 .052 .048 .053

.956 .049 .048 .054 .052 .054

.969 .047 .050 .051 .051 .051

.984 .044 .047 .050 .046 .052

.992 .048 .045 .055 .054 .056

.996 .050 .046 .053 .049 .054

we get R2L = .889. Therefore, min{R1L,R2l} = .889 is our 95%
lower confidence limit for R.

Reiser and Rocke (1993) computed the lower limits using
two recommended procedures, .898 (delta method on logits)
and .904 (bootstrap percentile). Note the closeness of our lower
limits with these two values.

6. CONCLUDING REMARKS

The WH approximation is a simple normal approximation
for a gamma distribution. In this article we have exploited this
approximation for several problems for the gamma distribu-
tion, including computation of prediction intervals and toler-
ance intervals and inference on the stress-strength reliability
parameter. Because solutions are already available for the cor-
responding problems in the normal case, the approximation has
allowed us to adopt these solutions for the gamma distribution
in a straightforward manner. In each case, we also have nu-
merically investigated the accuracy of our approximate solu-
tions. Our approach has resulted in a unified methodology for
addressing various problems when data can be modeled using
the gamma distribution, most notably in the context of envi-
ronmental applications, applications in industrial hygiene, and
applications to lifetime data analysis.
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