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INTRODUCTION

In the area of statistical process control (SPC), approaches for profile monitoring
proposed in the literature (Woodall et al. 2004; Woodall 2007) can be classified
with reference to the modeling technique considered (linear or nonlinear regression,
nonparametric regression or approaches for multivariate data reduction as the princi-
pal/independent component analysis) as well as to the type of application faced (i.e.,
calibration study, process signal, or geometric specification monitoring).

With reference to the type of application faced, most of the studies on profile
monitoring deal with calibration studies (Stover and Brill 1998; Kang and Albin
2000; Kim et al. 2003; Mahmoud and Woodall 2004; Chang and Gan 2006; Gupta
et al. 2006; Zou et al. 2006; Mahmoud et al. 2007) where the profiles that have to
be monitored are straight lines. A second stream of application concerns monitoring
of signals coming out from sensored machines. For example, Jin and Shi (1999,
2001) and Ding et al. (2006) referred to profiles representing force and torque signals
collected from online sensors on a press in a stamping process. The third stream of
applications concerns the use of profile monitoring for quality control of geometric
specifications (Colosimo and Pacella 2007, 2010; Colosimo et al. 2008, 2010). The
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present chapter specifically deals with this kind of applications of profile monitoring,
which is significant in the manufacturing field.

In manufacturing of mechanical components, technical drawings show an increas-
ing number of geometric specifications (aka geometric tolerances). This is mainly
due to the deeper interest in relating the characteristics of a geometric feature (i.e.,
a machined profile or surface) to the functional properties of the produced item. A
geometric specification is a product specification concerning a geometric feature,
i.e., a shape in a two-dimensional (2D) or in the three-dimensional (3D) space. This
specification can concern simple (e.g., roundness and cylindricity) or even complex
shapes (free-forms) and is designed for constraining the deviation of the actual fea-
ture from the ideal one, since this deviation can affect the functional properties of the
produced item.

A manufacturing process may experience changes due to the material machined,
improper setup, errors of the operator, wear or sudden changes of the machine
conditions, etc. Usually, these changes may cause deteriorated process performance,
i.e., the process may produce an increased number of nonconforming geometric
features, i.e., profiles and surfaces that deviate excessively from the ideal or nominal
shape. In this framework, a statistical process monitoring procedure should quickly
detect, by issuing an alarm, any deviation of the machined shape from the usual
pattern obtained when the process is in its in-control state.

The widespread use of modern measurement systems in manufacturing such as
coordinate measuring machines (CMMs), which decisively reduce the complexity
and the time required for checking geometric specifications, also contribute to the
increasing important role that profiles and surfaces play in modern manufacturing of
mechanical components. These machines, which can be controlled either manually
by an operator or automatically by a computer, are the most general-purpose devices
nowadays available in the industry for measuring tasks. Measurements are defined
by a probe attached to a moving axis of the machine. This probe (which can be
mechanical, optical, or laser, among others) assesses the position of a target in a
given reference system. By precisely recording the coordinates of the targets, points
are generated which can then be analyzed for describing the geometric feature.
Machined profiles and surfaces can be thought as functional data if a subset of the
coordinates, which are used to describe the position of each sampled point, can be
represented as function of one or more independent variables. When the independent
variables are fixed, they may act as a counter of the sampled point.

Consider a 2D circular profile described in a polar reference system. The radius
can be modeled as a function of the angular position. For example, Figure 8.1
depicts a circular profile, which consists of a set of P = 36 points located on equally
spaced angular positions. The independent variable is the angular position θp =
(p − 1) (2π/P), where p = 1, . . . , P and θp ∈ [0, 2π ] radiants (alternatively, θp

may be expressed in degrees as it is in Figure 8.1), while the dependent one is
the radius y

(
θp

)
. The circular profile in the polar diagram of Figure 8.1 can be

equivalently represented as in Figure 8.2.
Similarly, consider a 3D cylindrical surface described in a cylindrical reference

system, the surface can be modeled by representing the radius as a function of both the
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Figure 8.1 An example of circular profile in a polar reference system (angular positions in degrees); the
arrow shows the measure at a given angular position (6th point, angular position 50◦).
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Figure 8.2 An alternative representation of the circular profile depicted in Figure 8.1; the arrow shows
the measure at a given angular position (6th point, angular position 50◦).
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y(θp, ζq) θpζq

Figure 8.3 An example of cylindrical surface in a cylindrical reference system (function of the angular
and vertical position); the arrow shows the measure at a given angular and vertical position.

angular and vertical position. Figure 8.3 depicts a cylindrical surface, which consists
of a discrete set of points sampled on fixed and deterministic angular positions,
θp = (p − 1) (2π/P) where p = 1, . . . , P and θp ∈ [0, 2π ] (θp may be expressed
in degrees), as well as at fixed and deterministic vertical positions ζq = 2 q−1

Q−1 − 1
where q = 1, . . . , Q and ζq ∈ [−1, 1]. ζq is a normalized variable with reference to
the vertical position of the point. In Figure 8.3 the independent variables are θp and
ζq , while the dependent one is y

(
θp, ζq

)
.

Colosimo and Pacella (2007) and Colosimo et al. (2008) dealt with 2D roundness
profiles obtained by lathe-turning, showing that both principal component analysis
(PCA) and spatial autoregressive regression (SARX) models can be used for modeling
and then monitoring the geometric profile. By combining these models with control
charting, the authors showed how out-of-controls of the manufactured profile can be
easily and quickly detected. Subsequently, Colosimo and Pacella (2010) compared
performance of different approaches (as the previous two model-based approaches
as well as a different simpler approach) to outline scenarios in which a specific
approach outperforms the others in geometric error monitoring. Eventually, Colosimo
et al. (2010), who used as case study the cylindricity of lathe-turned items, showed
that 3D surfaces can be modeled as functional data as well and surface monitoring
can be considered as a generalization of profile monitoring. The SARX model for
2D roundness profiles in (Colosimo et al. 2008) was exploited as starting reference
to identify the parametric models of the large-scale pattern characterizing all the
3D cylindrical surfaces. The model was further extended to represent the spatial
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correlation characterizing adjacent points on each machined surface, i.e., a parametric
model of cylindrical surfaces able to represent both the large-scale and the small-scale
(spatial correlation) characteristics of the machined surface.

The present chapter summarizes results obtained in the aforementioned papers in
order to show how profile monitoring can be effectively used for monitoring geometric
features. A manufacturing reference case study, which is presented in Subsections
8.1.1 and 8.1.2, is used for this aim. The remainder of the chapter is structured as
follows. In Section 8.1, examples of geometric feature concerning circularity are
introduced. Section 8.2 presents two analytical methods, i.e., regression and PCA,
for modeling the functional relationship representing the manufactured shape and
for checking whether or not the estimated model is stable over time. Section 8.3
shows how traditional approaches for SPC can be used for monitoring geometric
form errors. Given their easiness of use, these approaches are viable solutions for the
industrial practice. In Section 8.4, a comparison study is presented in order to allow
one to select a specific approach in a given production scenario. Section 8.5 discusses
a possible generalization of the approaches for modeling 3D functional data and how
profile monitoring can be generalized to surface monitoring. Conclusions and final
remarks are given in Section 8.6.

8.1 EXAMPLES OF GEOMETRIC FEATURE
CONCERNING CIRCULARITY

8.1.1 An Example of 2D Geometric Feature Concerning Circularity

Assume we collect a group of N 2D profiles, where each profile consists of P
measurements observed at a fixed set of locations. Let yn (p) denote the dependent
variable measured at a specific location of index p on the nth profile, (p = 1, . . . , P
and n = 1, . . . , N ). In the case of circular profiles, each consisting of P points
sampled on a fixed set of equally spaced positions, the dependent variable yn (p)
is the radial deviation from the nominal radius measured at the angular positions
θp = (p − 1) 2π

P .
The real case study presented by Colosimo et al. (2008) is used as reference

throughout this chapter for 2D profiles. In particular, the case study refers to circular
profiles measured on N = 100 items produced by lathe-turning starting from C20
carbon steel cylinders (original diameter 30 mm, final diameter 26 mm). One circular
profile was measured for each item, at a given distance from the spindle, by using
a CMM. Each circular profile consisted of P = 748 equally spaced measurements
of the radius, where each measurement corresponds to a given angular position. The
original measurements were scaled by subtracting the least-squares estimate of the
radius and centered at the least-squares estimate of the centre. Hence, each point in
a circular profile can be seen as the radial deviation from the mean radius observed
at a given angle and this is why observations on a profile can be either positive or
negative. A graphical representation of the whole experimental data set, in which the
independent variable is the location index on the part and the dependent one is the
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Figure 8.4 100 roundness profiles of 748 points each (one out of the 100 profiles in bold line); vertical
axis scale (mm); the independent variable is the location index on the part (from 1 to 748).

deviation from the nominal radius in mm, is shown in Figure 8.4 (where 1 out of the
100 profiles is in bold line).

From Figure 8.4 it seems that no systematic pattern is characterizing the roundness
profiles of the reference case study. This appearance hides a common problem of
shape analysis, which consists in feature registration or alignment. In fact, the profiles
shown in Figure 8.4 are actually misaligned because of the random contact angle of
the turning process. Figure 8.5 shows the aligned roundness profiles after that a
proper registration procedure is implemented on the data. The goal of the registration
procedure implemented is to minimize the phase delay caused by the random contact
angle (Colosimo and Pacella 2007). From a visual inspection of Figure 8.5, it can
be easily observed that the roundness profiles share a common shape (pattern),
i.e., the turning process leaves a specific manufacturing signature on the machined
components (Colosimo et al. 2008).

For a circular feature, the geometric form error of the actual profile from the ideal
geometry is represented by a synthetic variable. In the case of a circular profile,
such a value is referred to as out-of-roundness (OOR). The OOR is computed as the
difference between the maximum and the minimum radial distances of the actual
geometric feature with respect to a predetermined center, which is the center of the
so-called substitute geometry. Geometrically, this corresponds to find two concentric
circles, one circumscribing and one inscribing the profile sampled on the manufac-
tured feature. The OOR is then estimated by the width of the annulus determined by
these two concentric circles (see Figure 8.6).

Several algorithms and methods can be implemented in order to determine the
common center of the circumscribed circle and of the inscribed one. Previous studies
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Figure 8.5 Hundred roundness profiles of 748 points each; aligned data (one out of the 100 profiles in
bold); vertical axis scale (mm); the independent variable is the location index on the part (from 1 to 748).

(Colosimo et al. 2008) showed that no difference in profile monitoring results can be
found if the minimum zone (MZ) rather than the least-squares (LS) approach is used
for computing the form error. This is why the LS algorithm is considered as reference
from now on.

The LS algorithm (i.e., the widely used procedure for form tolerance evaluation)
minimizes the sum of squared deviations of measured points from the fitted feature.

Figure 8.6 A schematic representation of the OOR value for a circular profile; the dashed line represents
the substitute geometry (Adapted from Colosimo et al. 2008.)
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The LS method associates one substitute feature to measurement points (e.g., one
circle for roundness) and calculates the maximum peak-to-valley distance of the
measurement points from the substitute feature (Moroni and Pacella 2008).

Usually, a circular profile is considered as conforming to requirements when the
OOR value is lower than the geometric specification (i.e., the tolerance on the techni-
cal drawing). However, it should be noted that many different circular profiles, which
can induce different functional properties of the machined items, can be characterized
by the same OOR value resulting in important differences in characteristics of the
profile, for example, in the assembly precision, (Cho and Tu 2002).

8.1.2 An Example of 3D Geometric Feature Concerning Cylindricity

Assume we collect a group of N 3D surfaces, where each surface consists of P ×
Q measurements observed at a fixed grid of locations. Let yn (p, q) denote the
dependent variable measured at a specific location of indices p and q on the nth surface
(p = 1, . . . , P , q = 1, . . . , Q and n = 1, . . . , N ). In the case of cylindricity, yn (p, q)
is the radial deviation from the nominal cylinder, which is expressed in a cylindrical
reference system, i.e., at angular positions θp = (p − 1) (2π/P) and vertical positions
ζq = 2 q−1

Q−1 − 1 (θp ∈ [0, 2π ] and ζq ∈ [−1, 1]).
As previously described, the case study that consists of N = 100 items produced by

lathe-turning starting from C20 carbon steel cylinders is also used as a reference for 3D
surfaces. In particular, one cylindrical surface was measured for each item produced
by lathe-turning using a CMM. A set of P = 68 generatrices was sampled on each
surface and a set of Q = 61 points was measured on each of the 68 generatrices.
Therefore, a set of P × Q = 4148 points, equally distributed on the cylindrical
surface, was eventually available for each produced item.

Among different geometric specifications, cylindricity plays an important role
when functionality relates to rotation or coupling of mechanical components (e.g.,
shafts and holes). According to the standards, the cylindricity is the condition of a
surface of revolution in which all the points of the surface are equidistant from a
common axis. The deviation of the actual shape from the ideal one is specified by
the cylindricity error, which is the minimum radial distance between two coaxial
cylinders that contain among them the actual surface. This error is often referred to
as out-of-cylindricity (OOC). According to the standard, the OOC error has to be
computed in two steps. The first step consists in computing the reference cylinder,
which is fitted on the actual data by using one of several possible criteria (e.g., LS,
MZ). Then, the deviations of the actual shape from the reference cylinder is computed
and possibly modeled in the 3D space.

8.2 CONTROL CHARTS FOR PROFILE MONITORING

Many approaches proposed in the literature for profile monitoring focus on the case
of linear profiles only. However, when geometric features are of interest, approaches
focusing on nonlinear profiles should be more appropriate (Jin and Shi 1999, 2001;
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Young et al. 1999; Walker and Wright 2002; Ding et al. 2006; Williams et al. 2007;
Jensen et al. 2008; Zou et al. 2008; Zhang and Albin 2009).

Another important issue related to profile monitoring when geometric features
are of interest is the autocorrelation of data. Walker and Wright (2002) outlined that
“autocorrelation is frequently present in data that are observed within small intervals
of time or space. Indeed, the data analyzed exhibited a significant amount of positive
autocorrelation” (Walker and Wright 2002, p. 124). Despite the specific mention to
the autocorrelation problem, the approach proposed by Walker and Wright (2002)
was based on independent data, as most of the other approaches focused on profiles
monitoring. The only exception to this general rule is the papers by Jensen et al.
(2008) and Colosimo et al. (2008, 2010). In particular, while the first paper dealt with
autocorrelated profile data, the second ones focused on spatially autocorrelated data
and are more suitable for modeling geometric form features (i.e., profiles and surfaces
measured on machined items). As a matter of fact, when data refer to geometric form
errors, measurements are often spatially correlated because they are obtained in
similar conditions of the machining process and related to similar (local) properties
of the machined material. Spatial autocorrelation, which allows one to represent
contiguity in space, is different from temporal autocorrelation (time-series models).
In the case of profiles, contiguity in space implies that the dependency among data on
a profile is bidirectional (i.e., a given point may be correlated to points located on its
left and on its right, regardless of the specific direction), while time-series models are
suitable to represent just a one-direction dependency (i.e., past data influence future
ones) (Whittle 1954). Second, spatial models allow one to represent a specific type of
relationship among points observed in closed profiles (e.g., roundness profile). In fact,
when data on a closed or circuit profile are sequentially numbered (by defining an
arbitrary starting point), observations at the beginning and at the end of the profile are
spatially correlated. Colosimo et al. (2008, 2010) presented an approach for modeling
roundness profiles based on fitting a SARX model (Cressie 1993). The regression
model presented in these papers is summarized in Subsection 8.2.1.

8.2.1 The Regression-Based Approach

With reference to the case study presented in Subsection 8.1.1, assume we orga-
nize data into column vectors y′

n = [
yn (1) . . . yn (p) . . . yn (P)

]
, the general SARX

model can be written in matrix notation as follows:

yn = Xbn + υn,

(I − Rn) υn = εn, (8.1)

Rn =
S∑

s=1

asnW(s).

The first expression in Equation (8.1) describes the P × 1 vector of response for the
nth profile yn as formed by a large-scale and a small-scale component (Cressie 1993).
The large-scale component is given by Xbn where X is a P × R matrix of R regressor
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variables that are assumed to be known and constant and b′
n = [

b1n · · · brn · · · bRn
]

is the R × 1 vector of regression parameters that are normally distributed with mean
β′ = [

β1 · · · βr · · · βR
]

and covariance matrix B (bn ∼ N (β, B)).
The small-scale component is the P × 1 vector of error terms υn in Equation

(8.1). Error terms are assumed to be spatially correlated and are represented as a
spatial autoregressive process (SAR) of order S. The SAR (S) model is given by the
last two expressions of Equation (8.1), where I is the P × P identity matrix, εn is a
P × 1 vector of independently and normally distributed residuals

(
εn ∼ N

(
0, σ 2I

))
,

and a′
n = [

a1n · · · asn · · · aSn
]

is the vector of coefficients of the SAR (S) model
for the nth profile, which is assumed to be normally distributed with mean
α′ = [

α1 · · · αs · · · αS
]

and covariance matrix A (an ∼ N (α, A)).
The P × P matrix W(s) of elements w (s) (p1, p2) (p1, p2 = 1, . . . , P) repre-

sents the core of the small-scale model, since it is the sth order adjacent matrix
(s = 1, . . . , S). w (1) (p1, p2) is set equal to 1 if the p1th point is the neighbor of
the p2th, and 0 otherwise. Analogously, the element of a second-order adjacency
matrix, w (2) (p1, p2), is set equal to 1 if the p1th point is a neighbor of the original
first-generation neighbors of the p2th point, and so on. By definition, all the adja-
cency matrices are binary (i.e., they can have only 0 and 1 elements) and symmetric
matrices whose diagonal elements are equal to 0 (Cressie 1993).

For each profile, two vectors of coefficients bn and an are considered. In order to
let the model have the most general form, we further assume that these two vectors
could also be correlated, i.e., cov (bn, an) = D (Colosimo and Pacella 2010). In other
words, with reference to the parametric model structure given in Equation (8.1), we
merge the two vectors characterizing the observed pattern into a C-length single
coefficient vector related to the nth profile (where C = R + S):

c′
n = [

b′
n a′

n
] = [b1n · · · brn · · · bRn a1n · · · asn · · · aSn] ,

cn ∼ N (μ,�) , where μ′ = [
β′ α′] , � =

[
B D
D′ A

]
, (8.2)

the model for the nth profile shown in Equation (8.1) is completely defined by a
SARX model that requires one to estimate the C = R + S parameters, which are the
components of the vector cn , and the residuals’ variance σ 2.

Let ĉ′
n = [

b̂′
n â′

n

]
represent the vector of C parameters’ estimates for the j th

profile. A T 2 control chart can be designed with reference to the statistics

T 2
n = (ĉn − μ)′ �−1 (ĉn − μ) , (8.3)

where μ and � are the mean vector and covariance matrix of the coefficients (esti-
mated from a set of in-control profiles), respectively. Williams et al. (2006) studied
the performance of different control limits to be used for the T 2

n . When the number of
samples N is at least twice the number of parameters estimated (C + [C (C + 1)/2]),
the following upper control limit (UCL) can be used:

UCL = χ2
α,C , (8.4)
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where χ2
α,C is the 100 (1 − α) percentile of the chi-square distribution with C degrees

of freedom. The P × 1 vector of estimated residuals associated with the nth profile
can be described as follows:

en = (I − Rn)
(

yn − Xb̂n

)
, (8.5)

where Rn = ∑S
s=1 âsnW(s). The estimated variance of residuals σ̂ 2

n is given by

σ̂ 2
n = e′

nen

P − 1
. (8.6)

In order to monitor the residual variance, a traditional Shewhart-type control chart
can be used. Let σ 2 denote the actual residuals’ variance, the upper and lower control
limits can be computed as follows:

UCL = σ 2

P − 1
χ2

α/2,P−1,

CL = σ 2, (8.7)

LCL = σ 2

P − 1
χ2

1−(α/2),P−1,

where χ2
α/2,P−1 and χ2

1−(α/2),P−1 are respectively the upper and lower α/2 percentage
points of the chi-square distribution with P − 1 degrees of freedom associated with
the residuals (Montgomery 2004).

8.2.1.1 Application of the Regression-Based Approach
The SARX model in Equation (8.1) can be fitted to the data of the case study in
previous subsection 8.1.1. In the case of circular profiles, the large-scale component
in Equation (8.1) can be expressed as linear combination of harmonics (Cho and Tu
2001). Therefore, the element of the r th column and nth row of X in Equation (8.1),
say xr (p), can be expressed either as xr (p) = cos

(
hθp

)
or xr (p) = sin

(
hθp

)
, i.e., as

a sinusoidal function of frequency equal to h (2π/P) rad/sample. h ∈ {1, . . . , P/2}
is an index, which represents the undulations per revolution (upr) of the sinusoidal
function.

Two harmonics were selected for modeling the radial deviations in the actual case
study, namely the second and the third one (h = 2, 3). Indeed, the process signature
was mainly affected by ovality and triangularity. The oval contour was possibly due
to a bi-lobe error motion affecting the spindle’s lathe or to eccentricity caused by
an improper setup, while the tri-lobe pattern was due to a similar error motion of
the spindle. Hence, matrix X in Equation (8.1) has R = 4 columns. The pth row of
matrix X is equal to

[
cos

(
2θp

)
sin

(
2θp

)
cos

(
3θp

)
sin

(
3θp

) ]
.

As for the small-scale component of the actual roundness profiles, the vector error
terms υn in Equation (8.1) was modeled as a SAR model of order 2 (S = 2) using
the algorithm implemented in the spatial econometrics toolbox (LeSage 1999).
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Table 8.1 Parameters for the Distribution of SARX Coefficients cn ∼ N (μ, �) for the
Actual Roundness Data of the Reference Case Study

β′ = [ −0.0341 0.0313 0.0080 −0.0322
]

α′ = [
0.3021 0.2819

]

B =

⎡

⎢
⎢
⎣

4.0646 −2.0200 0.6540 0.2652
−2.0200 3.8961 1.4851 0.0614

0.6540 1.4851 2.2346 −0.1074
0.2652 0.0614 −0.1074 3.1214

⎤

⎥
⎥
⎦ × 10−4

D =

⎡

⎢
⎢
⎣

−0.8844 −2.4101
−1.2123 1.9568
−1.1844 0.5958
−1.4993 −3.7224

⎤

⎥
⎥
⎦ × 10−4

A =
[

38.0199 15.8999
15.8999 43.2491

]
× 10−4

Given the identified model, each profile of index n was associated to a vec-
tor of C = 4 + 2 parameters cn = [

b1n b2n b3n b4n a1n a2n
]
. We observed that the

C-length parameter vector cn changes from profile to profile according to a C-
variate normal distribution of mean μ and covariance matrix �, i.e., cn ∼ N (μ,�)
(the Shapiro–Wilk normality test for multivariate distribution was used, with a
p-value equal to 0.03121). Table 8.1 summarizes the vector μ = [

β′ α′ ] and the

matrix � =
[

B D
D′ A

]
estimated on the actual data.

Hence, by considering the values of μ and � in Table 8.1, instances of the C-
length parameter vector cn can be simulated on a computer (the command “mvnrnd”
of MATLAB was used in our work). By combining instances of the C-length param-
eter vector cn to instances of the P-length vector of residuals εn the SARX model
in Equation (8.1) can be used to simulate on a computer realistic roundness profiles
(Colosimo and Pacella 2010). In particular, the residuals εn were simulated as inde-
pendently and normally distributed, with zero mean and common standard deviation
σ (the command “randn” of MATLAB was used in our work). The numerical value
σ = 9.2244 · 10−4 mm was estimated from actual data and used for the simulations
of roundness profiles in our work.

As for example, we considered a set of N = 100 roundness profiles obtained from
computer simulation. Two control charts (i.e., a multivariate control chart on the
estimated coefficients ĉ′

n and a univariate control chart on the estimated residuals’
variance σ̂ 2

n ) were designed on the simulated data. Assuming a nominal false-alarm
probability α′ = 1%, the Type I error probability of each chart was set equal to
α = 1 − √

1 − α′ = 0.5012%. Given that C = 6 and N = 100 in our case, the con-
dition suggested in Williams et al. (2006), i.e., N > 2 (C + [C (C + 1)/2]), to apply
the asymptotic control limit given in Equation (8.4) holds. Therefore, the control limit
of the T 2 control chart is given by UCL = χ2

0.005012,6 = 18.5416. Figure 8.7 depicts
the T 2 control chart which indicates no out-of-control profiles.
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Figure 8.7 T2 control chart for Phase I of 100 roundness profiles (simulated data).

Similarly, in order to monitor the residuals’ variance, a control chart was imple-
mented on the set of 100 simulated roundness profiles. The control limits in Equation
(8.7) were used for this control chart. An estimate of the residuals’ variance equal to
8.4717 × 10−7, which was obtained as mean of the residuals’ variance for each of
the N = 100 simulated profile, was considered for the limits. The numerical values
UCL = 9.7539 × 10−7 and LCL = 7.2935 × 10−7 were obtained. Figure 8.8 depicts
the σ 2 control chart which indicates no out-of-control profiles.

8.2.2 The PCA-Based Approach

Ramsay and Silverman (2005) presented an extension of PCA to functional data,
i.e., an approach that allows one to find a set of orthonormal functions (also called
functional principal components—PCs), so that the original data can be approximated
in terms of a linear combination of these basic functions. In particular, Ramsay and
Silverman (2005) showed that, in the case of equally spaced observations, the easiest
way to compute the PCs consists of modeling the curve data sampled at regular
intervals as a multivariate vector, and performing a traditional PCA on the set of
samples collected over different curves.

When the PCA outlines a set of significant PCs to be retained, the coefficients (or
loadings) defining these significant PCs can be interpreted as eigenfunctions (also
called empirical orthogonal functions). These eigenfunctions do not have a parametric
expression and are empirical, since they are obtained by the data at hand. A rough
sketch of how PCA works on profile data is discussed below.
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Figure 8.8 Shewhart control chart for monitoring the residual variance of Phase I roundness profiles
(simulated data).

Assume we organize N vectors of P × 1 profile data yp into an N × P matrix Y
whose nth row is the transpose of the nth data vector yn . PCA consists of performing
a spectral decomposition of the covariance matrix of Y. The covariance matrix
describes the variability of the data observed at each location with respect to the
mean value observed at the same location in all the profiles.

Let S be the covariance matrix, i.e., S = [1/(N − 1)]
∑N

n=1 (yn − ȳ) (yn − ȳ)′,
where ȳ = (1/N )

∑N
n=1 yn is the sample mean profile, the spectral decomposition

consists of finding the P × P matrices U and L that satisfy the following relationship:

U′SU = L, (8.8)

where L is a diagonal matrix that contains the eigenvalues of S (say l p), while U is an
orthonormal matrix whose pth column up is the pth eigenvector of S (the so-called
loadings).

With reference to the nth profile yn , denote by zn the vector

zn = U′ (yn − ȳ) = [
zn1 . . . znp . . . zn P

]′
, (8.9)

where znp are the so-called scores. Each profile can then be expressed as a linear
combination of loadings un , where the weights of the linear combination are the
scores znp

yn = ȳ + zn1u1 + · · · + znpup + · · · + zn P uP . (8.10)
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Since the PCs are statistically uncorrelated and each PC has variance equal to
the corresponding eigenvalue

(
l p

)
, we can rank the PCs according to the associated

eigenvalue and decide to retain just the most important ones (i.e., the ones which
are associated with larger variances). Different approaches can be used to select the
proper set of PCs (Jolliffe 2002; Jackson 2003). For instance, cross-validation can be
effectively used to choose the number M of significant PCs (Colosimo and Pacella
2007). When a subset M of the whole number of P PCs is retained (M < P), the
original profile can be estimated as follows:

ŷn(M) = ȳ + zn1u1 + · · · + znmum + · · · + znM uM . (8.11)

Similar to the regression-based approach, also in the case of PCA a T 2 control
chart can be used for monitoring the vector of the first M retained PCs. In this case,
the T 2 statistic is given by (Jackson 2003)

T 2
n = z2

n1

l1
+ · · · + z2

n2

lm
+ · · · + z2

nM

lM
. (8.12)

If the profile changes in a direction orthogonal to that of the first M PCs, previous
T 2 control chart will not be able to issue an alarm. For this reason, another control
chart based on the Q statistic (sometimes referred to as the squared prediction error or
SPE control chart) also has to be used (Jackson 2003). Given the estimate in Equation
(8.11), the Q statistic can be computed as the sum of the squared errors obtained by
reconstructing each observation by the first M PCs:

Qn = (
yn − ŷn(M)

)′ (
yn − ŷn(M)

)
. (8.13)

The upper control limit of the T 2 statistics in Equation (8.12) can be computed as
follows (Williams et al. 2006).

UCL = χ2
α,M , (8.14)

where χ2
α,M is the 100 (1 − α) percentile of the chi-square distribution with M degrees

of freedom. With reference to the Q statistic, according to Nomikos and MacGregor
(1995) the upper control limit can be computed as

UCL = gχ2
α,h, (8.15)

where g and h can be estimated as ĝ = σ̂ 2
Q/

(
2Q̄

)
, ĥ = 2Q̄2/σ̂ 2

Q while Q̄ and σ̂ 2
Q are

the sample mean and the sample variance obtained by computing the Q statistics via
Equation (8.13) for the set of the N profiles.

8.2.2.1 Application of the PCA-Based Approach
With reference to the aforementioned data set of N = 100 simulated roundness
profiles, we used a cross-validation approach in order to determine the number of
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Figure 8.9 First four eigenfunctions related to the four retained PCs (computed on simulated data).

significant PCs to be retained (Colosimo and Pacella 2007). With reference to the
simulated roundness profiles the number of significant PCs is equal to M = 4.

Once the PCA has been performed, the retained PCs should be interpreted to gain
more insight into the systematic pattern characterizing the machined profiles. To this
aim, each eigenfunction up (i.e., the coefficients of each eigenvector also known
as loadings) can be graphically presented as a function of the location. Following
this practice, Figure 8.9 depicts the polar diagrams of the first four eigenfunctions
(u1, u2, u3, u4), which are related to the four retained PCs. The first PC, which
describes the most important component of variability, presents a bi-lobe form. This
qualitative observation indicates that the main variability around the mean profile is
due to a periodic function characterized by a frequency of 2 upr. The second PC is
a mixture of a bi-lobe and a tri-lobe contour. This mixture is obtained by combining
two periodic functions, namely, a 2 and a 3 upr harmonic. The third PC presents a
tri-lobe contour, while the fourth PC is again a mixture of a bi-lobe and a tri-lobe
contour.
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Figure 8.10 T2 control chart for Phase I of 100 roundness profiles (simulated data).

Given the PCA model, a multivariate control chart on the scores (zn1, zn2, zn3, zn4)
and a univariate control chart on the Q statistic have to be designed. Assuming a
nominal false-alarm probability α′ = 1%, the Type I error probability of each chart is
set equal to α = 1 − √

1 − α′ = 0.5012%. The control limit of the T 2 control chart
in Equation (8.14) is UCL = χ2

0.005012,4 = 14.8546. The UCL of the Q control chart
is in Equation (8.15) and is about equal to 1.325 × 10−3.

Figure 8.10 depicts the PCA-based T 2 control chart, which indicates no out-
of-control conditions for the simulated profiles. Similarly, Figure 8.11 depicts the
Q control chart, which indicates two out-of-control conditions for the 52nd and
54th profile, where the Q statistic resulted slightly above the UCL. As we dealt
with simulated in-control profiles no special causes existed to explain these out-of-
controls. Therefore, they can be considered false alarms released by the Q control
chart and probably due to the different structure of the error terms’ correlation, which
indeed changes from profile to profile.

8.3 SIMPLE APPROACHES FOR MONITORING MANUFACTURED
PROFILES: THE INDUSTRIAL PRACTICE

8.3.1 Control Chart on Geometric Errors

When quality of a manufactured product is related to a geometric specification
(represented by a tolerance value), the Shewhart’s control chart can still be used
for process monitoring. In fact, the information related to a geometric feature must
be summarized in just one synthetic variable to decide whether the machined item
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Figure 8.11 Q control chart for Phase I of 100 roundness profiles (simulated data).

has to be scrapped/reworked or can be considered conforming to the requirement. In
the case of a circular profile, the OOR value is computed. Then, the circular feature
is considered conforming to the requirement if the corresponding OOR is not greater
than the tolerance value.

Since the OOR values have to be computed for quality inspection of manufactured
items, these values can also be exploited for process monitoring. Indeed, the simplest
approach for process monitoring consists of designing a Shewhart’s control chart of
the OOR values. In order to exemplify this approach, the set of 100 roundness profiles
previously obtained from simulation is considered as reference. Table 8.1 reports the
OOR values (LS method) obtained for each item. The implementation developed by
NPL (the UK’s National Measurement Laboratory) and based on the Least Squares
Geometric Elements (LSGE) library for MATLAB was considered (Forbes 1994).

With reference to the 100 samples in Phase I, summarized in Table 8.2, an indi-
vidual’s control charts on the OOR values was designed. The Anderson–Darling test
was implemented in order to detect any departures from normality for the distribution
function of the 100 OOR values. From numerical computation on the data reported
in Table 8.1, the set of 100 OORs resulted to be normally distributed (p-value equal
to 0.559). Therefore, a control chart for individuals was designed for the sequence of
sample OOR values (with a nominal false-alarm probability α = 1%). This control
chart, in which no out-of-control alarms are released, is showed in Figure 8.12.

8.3.2 The Location Control Chart

A different approach, aimed at combining simplicity with the need of keeping
all the information of data observed at each location of the machined feature is
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Table 8.2 OOR Values (100 Simulated Profiles) on the basis of the LS Algorithm; Scale
OOR (mm)

OOR OOR OOR OOR OOR

1 0.0143 21 0.0125 41 0.0150 61 0.0154 81 0.0137
2 0.0164 22 0.0099 42 0.0127 62 0.0163 82 0.0128
3 0.0137 23 0.0144 43 0.0169 63 0.0142 83 0.0074
4 0.0155 24 0.0135 44 0.0097 64 0.0129 84 0.0126
5 0.0127 25 0.0180 45 0.0126 65 0.0146 85 0.0087
6 0.0139 26 0.0114 46 0.0106 66 0.0100 86 0.0101
7 0.0147 27 0.0133 47 0.0169 67 0.0118 87 0.0129
8 0.0069 28 0.0075 48 0.0119 68 0.0144 88 0.0137
9 0.0158 29 0.0138 49 0.0179 69 0.0142 89 0.0177
10 0.0086 30 0.0110 50 0.0112 70 0.0175 90 0.0176
11 0.0114 31 0.0147 51 0.0150 71 0.0120 91 0.0119
12 0.0111 32 0.0142 52 0.0131 72 0.0112 92 0.0116
13 0.0169 33 0.0148 53 0.0096 73 0.0169 93 0.0139
14 0.0098 34 0.0190 54 0.0118 74 0.0060 94 0.0102
15 0.0137 35 0.0124 55 0.0126 75 0.0134 95 0.0144
16 0.0100 36 0.0106 56 0.0092 76 0.0123 96 0.0112
17 0.0089 37 0.0132 57 0.0125 77 0.0132 97 0.0181
18 0.0179 38 0.0124 58 0.0099 78 0.0198 98 0.0135
19 0.0128 39 0.0120 59 0.0136 79 0.0120 99 0.0127
20 0.0088 40 0.0142 60 0.0106 80 0.0110 100 0.0153

Figure 8.12 Individuals control charts of the transformed OOR values based on the LS algorithm;
vertical axis scale (mm).
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the location control chart. This approach, which was presented in Boeing (1998,
pp. 89–92), consists of applying a Shewhart’s control chart separately to each data
point observed at a given location of the part. The rationale behind this approach is
that, if the observed shape is in-control, the data observed at that specific location
should stay within that interval with a given probability. On the other hand, when the
process goes out-of-control, it is likely that the control interval will be violated at one
or more locations.

In order to design the location control chart, the first step consists of identifying
the center of each interval, i.e., the systematic pattern of the in-control shape. This
reference is usually estimated as the average of all the in-control data observed at
each location. Starting from the mean shape, the location control chart (LOC CC)
consists of computing the upper and lower control limits at each location, by using
the usual approach that place the limits at ±K standard deviations from the sample
mean. According to this method, an alarm is issued when at least one point, in the
whole set of data observed, exceeds the control limits.

Due to its inner simplicity, this chart can be easily applied in industrial practice
(and in fact its origin is in Boeing with reference to applications in which numerous
measurements of the same variable, e.g., a dimension such as thickness, are made
at several locations on each manufactured part). However, since the control limits
used at each location depend on the responses at that specific position only, the main
disadvantage with this method is that the multivariate structure of data is completely
ignored. The only form of relationship between control intervals at each location is a
constraint on the false alarm, as discussed in Subsection 8.3.2.1.

8.3.2.1 Design of the Location Control Chart
The control limits for location of index p are as follows:

UCL (p) = ȳ (p) + Zα/2s (p) ,

CL (p) = ȳ (p) ,

LCL (p) = ȳ (p) − Zα/2s (p) ,

(8.16)

where ȳ (p) = 1
N

N∑

n=1
yn (p) and s (p) =

√
1

N−1

N∑

n=1
[yn (p) − ȳ (p)]2 are, respectively,

the sample mean and the sample standard deviation of data observed at location p,
while Zα/2 represents the (1 − α/2) percentile of the standard normal distribution.
The constant K = Zα/2 of the control band is computed as a function of the required
false alarm rate. However, given that P dependent control rules are simultaneously
applied, the percentile of the standardized normal distribution used to compute K
should be corrected. To this aim, the Bonferroni’s rule for dependent events is used
to attain an actual false alarm rate not greater than a predefined value. Let α′ denote
the upper bound of the false alarm rate the value α = α′/P is used for designing the
P control limits in Equation (8.16).

It is worth noting that different procedures can also be used, such as the Simes’
modified Bonferroni procedure (Simes 1986). Colosimo and Pacella (2010) showed
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Figure 8.13 LOC CC (748 locations) with reference to the 100 simulated profiles; actual false alarm
rate not greater than 0.01; vertical axis scale (mm).

that when compared with the standard Bonferroni’s method, the Simes’ procedure
does not produce significant effects on the false alarm rate of the location control chart.
Furthermore, since the Simes’ procedure does not allow the graphical representation
of the control region as the Bonferroni’s procedure does, this latter method is the one
considered in practice.

Figure 8.13 shows the average profile and the control band of the simulated
roundness profiles. The Bonferroni’s rule for dependent events is used to attain an
actual false alarm rate not greater than a predefined value. In particular, assuming the
standard value α′ = 0.01 as upper bound for the Type I error probability, the value
α = 1.3369 × 10−5 (i.e., Zα/2 = 4.354) is used for designing the 748 control limits
in Equation (8.16).

Figure 8.14 shows one out of the 100 profiles depicted against the control limits
of the location control chart. The profile is plotted against this control region with
the advantage of allowing a simple identification of the locations where problems
arise. In this specific case, the profile is considered in-control. Indeed, from the visual
inspection it appears that the profile behavior is close to the average common profile
and there is no apparent discrepancy in the shape of the profile when compared to the
center line of the location control chart.

8.4 PERFORMANCE COMPARISON

In order to allow practitioners to select a specific approach for monitoring functional
data in a given situation, the present section provides a numerical comparison based
on simulation of (1) the LOC CC; (2) the individuals’ control chart of the geometrical
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Figure 8.14 One out of the 100 profiles of the reference case study depicted against the control limits
of the location control chart; vertical axis scale (mm).

errors (OOR CC); (3) the regression-based approach (REG CC); and (4) the PCA-
based approach (PCA CC).

The comparison study is based on two simulation scenarios, which are obtained
from the real case study of roundness profiles obtained by lathe-turning. The sim-
ulation scenarios were designed for representing two different, although realistic,
productive situations. Performance is measured both as the ability to obtain a prede-
fined false alarm rate in the design phase of the control chart (Phase I) as well as to
detect unusual patterns in the functional data during the operating phase (Phase II).

For Phase I analysis, only groups of uncontaminated process samples were consid-
ered in this study. In-control profiles were obtained by simulation, while the perfor-
mance of the competing methods were compared in terms of the probability of obtain-
ing at least one statistic outside the control limits when performing control charting
using the set of simulated samples. Control chart parameters estimated from these
Phase-I samples were not used in the subsequent Phase-II comparison study, where
performance comparison was based on the ideal assumption that the in-control param-
eters are known. Indeed, computer simulation was used to obtain a large data set of in-
control profiles in order to estimate as closely as possible control chart’s parameters.

Basically, the objective in this section is to investigate situations where each
approach should be preferred to the others, thus to provide some guidelines for
implementing profile monitoring in actual applications.

8.4.1 Production Scenarios Under Study

In this section, the focus is on two different production scenarios. On the one hand,
the first production scenario mimics the real case study where the C-length parameter
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vector cn changes from profile to profile according to a C-variate normal distribution
of mean μ and covariance matrix �, i.e., cn ∼ N (μ,�). The actual values of the
mean vector μ and of the covariance matrix � used for the simulation of this scenario
are summarized in Table 8.1.

On the other hand, the second scenario is obtained by perturbing the SARX model
in Equation (8.1) with reference to the variability that characterizes the C-length
parameter vector cn . In particular, a null matrix is considered as covariance matrix
(� = 0) for the C-variate normal distribution of model parameters. Hence, a fixed
vector of parameters is used for each instance (cn = μ).

The production scenario where cn may change from profile to profile is referred
to as random-effect model. The production scenario, in which parameters cn do not
change, is referred to as fixed-effect model. It is worth noting that random-effect and
fixed-effect are referred to both the large-scale and small-scale variability components
in Equation (8.1).

A fixed-effect model is usually assumed in traditional approaches for profile mon-
itoring (Woodall et al. 2004). In manufacturing, assuming that the input material is
very stable and homogeneous, profile-to-profile variability of the small-scale compo-
nent (spatial structure) can probably be neglected. Furthermore, assuming a process
more stable and/or more controlled, also the profile-to-profile variability in the large-
scale component (harmonic structure) tends to vanish. In other words, while the first
scenario with random effects corresponds to a common machining process, in which
natural causes of variability affects the variability in both the parameters and residuals
of the model, the second scenario with fixed effects can be considered representative
of a process more stable and/or more controlled in which natural causes can affect
only the residuals of the model.

8.4.2 Phase I: Performance Comparison

In Phase I, a set of N process samples is analyzed in order to both evaluate the
stability of the process and estimate the in-control state’s parameters. During Phase I,
the performances of the competing control charts are compared in terms of the
probability of deciding whether or not the process is stable. This is the probability
of obtaining at least one statistic outside the control limits when performing control
charting using the set of N process samples.

Given a desired false alarm or Type I error rate α′, assumed equal to α′ = 1% in
the following, the competing approaches can be compared in terms of the probability
of actually achieving this nominal value.

To compare the performance of the alternative approaches, we considered 10000
replicates of Phase I control charting for different values of the number of profiles
used in this phase, specifically N = 50, 100, 150, and 200. We recorded the false
alarm rate in each replicate (computed as the number of out-of-control signals divided
by N ) and then we stored the average false alarm rate obtained in the whole set of
10000 replicates.

Table 8.3 summarizes the actual Type I error rates for each of the competing meth-
ods in the two simulation scenarios considered in our work. For the two production
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Table 8.3 Phase I Simulation Results; Average type I Error Rate and Corresponding
Standard Deviations within Brackets

Random-Effect Model Fixed-Effect Model

N LOC CC OOR CC REG CC PCA CC LOC CC OOR CC REG CC PCA CC

50 0.070% 0.815% 1.048% 1.210% 0.048% 1.124% 1.049% 0.935%
(0.004%) (0.013%) (0.014%) (0.015%) (0.003%) (0.015%) (0.014%) (0.014%)

100 0.283% 0.833% 1.037% 1.495% 0.208% 1.167% 1.013% 1.022%
(0.005%) (0.009%) (0.010%) (0.012%) (0.005%) (0.011%) (0.010%) (0.010%)

150 0.391% 0.836% 1.044% 1.562% 0.306% 1.167% 0.985% 1.048%
(0.005%) (0.007%) (0.008%) (0.010%) (0.005%) (0.009%) (0.008%) (0.008%)

200 0.454% 0.828% 1.031% 1.607% 0.353% 1.186% 0.988% 1.065%
(0.005%) (0.006%) (0.007%) (0.009%) (0.004%) (0.008%) (0.007%) (0.007%)

scenarios under study it can be observed that the false alarm rates produced by the
LOC CC are always lower than the nominal value (1%), although the gap between ac-
tual and nominal rate decreases as the number N of profiles used in Phase I increases.
This is an expected result as the Bonferroni’s inequality allows one to set only an
upper bound on the actual false alarm rate. Note that a reduced false alarm rate could
seem an advantage at first sight. However, it means that control limits are too far from
the center line, thus, resulting in the ineffective detection of out-of-control profiles
when they arise.

The false alarm rates produced by the OOR CC are smaller than the nominal value
in the case of random-effect model, while they are greater than the nominal value
in the case of fixed-effect model. These results can be mainly ascribed to a slight
departure from normality observed for the OOR values, where the departure depends
on the specific scenario (random-effects or fixed-effects). It is also worth noting
that, in the case of the individuals control chart on the geometrical errors, the false
alarm rate of the control chart is not influenced by the number N of profiles used in
Phase I.

In contrast to the previous two approaches, the actual false alarm rates obtained
by the regression-based approaches are much closer to the nominal value. In fact, as
shown in Table 8.3, in spite of both the specific scenario and the dimension N , there
is no practical difference between the actual false alarm rate produced by the REG
CC and the nominal value.

The PCA CC is a little more sensitive than the REG CC to the production scenario,
since it gives a false alarm closer to the nominal value in the case of fixed-effect model
but not in the case of random-effect. With reference to this last scenario, the PCA
CC consists of two control charts. A multivariate control chart based on the first four
retained PCs and a univariate control chart for monitoring the residuals (the Q chart).
The excessive false alarm rate produced is mainly due to the Q chart. As a matter
of fact, Colosimo and Pacella (2010) showed that the upper control limit for the Q
statistic proposed by Nomikos and MacGregor (1995) is substantially adequate when
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an independently distributed error term is considered in the model, as well as in the
case of correlated errors with fixed effects in the small-scale component of the model.
However, such a limit is not suitable in the case of correlated errors with random
effects in the small-scale component of the model.

Finally, with reference to the Phase I simulation results reported in Table 8.3, it is
fair to conclude that regression-based control charts can easily be designed, since the
actual false alarm rate can be achieved in practice by using an analytic computation of
the control limits. Similar conclusions can also be drawn with reference to the PCA
CC , but only in the specific production scenario of fixed effects. On the contrary,
the design of an LOC CC can be a difficult task, since the actual false alarm rate can
be different from the expected rate. In the case of the individuals control chart on
the geometrical errors, we observed that a departure from normality may also make
difficult the design of this control chart. However, as we are monitoring non-negative
values (the OOR values), if a proper power transformation (Box–Cox transformation)
can be identified, we expect that the design of this individuals control chart should
be simplified.

8.4.3 Phase II: Performance Comparison

The objective in Phase II is to quickly detect any change in the process from its
in-control state. The monitoring approaches are compared in terms of the average run
length (ARL), where the run length is defined as the number of samples taken until
an out-of-control signal is issued.

In order to evaluate performance in Phase II, occurrences of assignable causes
are simulated by a total of three out-of-control conditions. These out-of-controls
are simulated by spindle-motion errors (Cho and Tu 2001), which are modeled by
introducing a spurious harmonic in the baseline model of roundness profile data. Each
condition is then characterized by a parameter directly proportional to the severity of
the out-of-control introduced in the baseline model. In particular, denoting by yn (p)
the measurement of index p = 1, . . . , P on the profile of index n = 1, 2, . . ., the
out-of-controls are simulated according to the following three models:

half-frequency spindle-motion error, which is modeled as:

yn (p) +
√

2

P
δ1 sin

(
1

2
θp

)
, (8.17)

where δ1 is the size of the shift (δ1 = 0.1, 0.15, 0.2, 0.25);
bi-lobe out-of-control, which is simulated by incrementing the amplitude of the

second harmonic in the baseline model as follows:

yn (p) +
√

2

P
δ2

[
c1n cos

(
2θp

) + c2n sin
(
2θp

)]
, (8.18)

where δ2 is the increasing factor (δ2 = 0.1, 0.2, 0.3, 0.4);
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tri-lobe out-of-control, which is simulated by incrementing the amplitude of the
third harmonic with respect to the baseline model as follows:

yn (p) +
√

2

P
δ3

[
c3n cos

(
3θp

) + c4n sin
(
3θp

)]
, (8.19)

where δ3 is the increasing factor (δ3 = 0.1, 0.2, 0.3, 0.4).
Data obtained under these Phase II models are also scaled (by subtracting the least

squares estimation of the radius) and centered (on the least squares estimation of
the center) before applying the profile monitoring method. In fact, we are assuming
that centering and scaling are standard steps applied to data when the focus is on the
geometrical errors (Cho and Tu 2001).

Performance comparison is based on the ideal assumption that the in-control
parameters for each competing method are known. Indeed, computer simulation is
used in our work to obtain a large dataset of in-control profiles in order to estimate as
closely as possible the parameters of each method. For the two production scenarios,
all simulations were conducted by first tuning each competing approach in order to
achieve the same in-control ARL value of about 100. Hence, the performance in
Phase II are related to the ability of detecting out-of-control profiles, given that all the
approaches are designed to achieve the same false-alarm probability approximately
equal to 1%.

Tables 8.4 and 8.5 summarize the simulation results for the two production sce-
narios under study. In particular, Table 8.4 refers to the case of random-effect model,
while Table 8.5 refers to the case of fixed-effect model. Each table reports the ARLs
estimated by computing a set of 1000 run lengths, given new profiles simulated

Table 8.4 Phase II Simulation Results for the Production Scenario with
Random-Effect Model; ARLs and Corresponding Standard Deviations
within Brackets (1000 trials)

Delta LOC CC OOR CC REG CC PCA CC

Half-frequency 0.1 73.26 (2.18) 98.15 (3.12) 93.18 (2.83) 80.04 (2.56)
0.15 50.53 (1.57) 97.89 (3.06) 78.68 (2.63) 61.07 (1.90)
0.2 35.61 (1.16) 85.00 (2.71) 68.49 (2.16) 44.43 (1.37)
0.25 22.49 (0.72) 63.51 (2.01) 48.50 (1.56) 29.05 (0.89)

Bi-lobe 0.1 64.08 (1.92) 72.39 (2.32) 76.41 (2.42) 64.29 (1.89)
0.2 36.07 (1.16) 44.66 (1.42) 47.48 (1.60) 38.03 (1.22)
0.3 24.01 (0.77) 25.69 (0.81) 29.76 (0.92) 21.21 (0.67)
0.4 14.98 (0.45) 18.40 (0.57) 16.93 (0.53) 12.61 (0.38)

Tri-lobe 0.1 70.44 (2.16) 88.29 (2.80) 72.51 (2.27) 70.08 (2.19)
0.2 43.66 (1.44) 67.87 (2.18) 47.72 (1.50) 37.55 (1.17)
0.3 30.33 (0.94) 46.82 (1.49) 27.57 (0.85) 21.70 (0.67)
0.4 19.43 (0.60) 33.81 (1.04) 17.39 (0.54) 12.60 (0.40)
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Table 8.5 Phase II Simulation Results for the Production Scenario with Fixed-Effect
Model; Actual ARLs and Corresponding Standard Deviations within Brackets (1000
trials)

Delta LOC CC OOR CC REG CC PCA CC

Half-frequency 0.1 33.31 (1.00) 42.47 (1.36) 1.27 (0.02) 6.00 (0.17)
0.15 12.26 (0.38) 19.71 (0.59) 1.00 (0.00) 1.51 (0.03)
0.2 4.81 (0.13) 11.21 (0.33) 1.00 (0.00) 1.03 (0.01)
0.25 2.37 (0.06) 5.83 (0.17) 1.00 (0.00) 1.00 (0.00)

Bi-lobe 0.1 72.11 (2.13) 58.40 (1.86) 6.75 (0.19) 45.89 (1.40)
0.2 37.70 (1.21) 21.72 (0.69) 1.20 (0.02) 7.02 (0.20)
0.3 21.47 (0.63) 8.87 (0.27) 1.00 (0.00) 1.71 (0.04)
0.4 10.63 (0.32) 4.22 (0.12) 1.00 (0.00) 1.05 (0.01)

Tri-lobe 0.1 86.85 (2.72) 82.43 (2.71) 16.70 (0.50) 64.30 (1.94)
0.2 60.26 (1.92) 38.99 (1.24) 2.44 (0.06) 20.18 (0.57)
0.3 33.59 (1.04) 20.37 (0.67) 1.11 (0.01) 5.20 (0.15)
0.4 21.56 (0.66) 10.42 (0.32) 1.01 (0.00) 1.87 (0.04)

according to a specific out-of-control model. Standard deviations estimated for such
mean values are also included within brackets.

Since in industrial applications the analyst is not expected to know a priori what
kind of out-of-control condition will affect the production process and how severe
it will be, we consider a measure of the overall performance for each of the five
competing approaches in each production scenario. To do this, we consider the
mean ARL values for each competing approach in signaling a generic out-of-control
condition of any severity for that production scenario. We are assuming that all out-
of-controls previously considered are equally probable and that the analyst knows
the model of monitored functional data (this is plausible when a retrospective phase
of control charting has been accomplished).

Figures 8.15 and 8.16 graphically depicts the 95% Bonferroni’s confidence in-
tervals of the overall ARLs presented by the four competing approaches in each
production scenarios considered in our study. A discussion on the performance com-
parisons is detailed in the following two subsections for the production scenarios
with random-effect model and fixed-effect model, respectively.

8.4.3.1 Production Scenario with Random-Effect Model
From the results reported in Table 8.4, graphically summarized in Figure 8.15, it can
be observed that the OOR CC presents the lowest power of detection when compared
to the competing methods.

Similarly, the REG CC has a small power of detection in signaling out-of-controls.
This may be mainly ascribed to the variability in the regression parameters that
characterizes this production scenario with random effects for the baseline model. As
a matter of fact, it should be noted that for the out-of-control conditions considered
in our study (half-frequency, bi-lobe and tri-lobe), the majority of alarms released
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Figure 8.15 95% Bonferroni’s confidence intervals of the overall ARL for the competing approaches
for the production scenario with random-effect model.

by the REG CC are produced by the multivariate control chart on the vector of
fitted parameters. The extra variability in the regression parameters, which naturally
characterizes the vector of fitted parameters in this scenario, causes a lower detection
power of the regression-based control charts, in particular of the multivariate control
chart.

Figure 8.16 95% Bonferroni’s confidence intervals of the overall ARL for the competing approaches
for the production scenario with fixed-effect model.
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On the other hand, it can be noted that the PCA CC presents, in many cases,
outperforming performance when compared with the regression-based approach. As
previously mentioned, the PCA CC consists of a multivariate control chart based
on the first four retained PCs and of a univariate control chart for monitoring the
residuals variability (the Q control chart).

Furthermore, from Table 8.4 it can be also noted that the LOC CC presents com-
parable performance to that observed for the PCA CC . In a few of cases, especially
in the case of half-frequency out-of-control, surprisingly the LOC CC outperforms
the PCA CC. This result shows that the simple LOC CC can be considered a valu-
able alternative to parametric methods for profile monitoring, at least in a production
scenario with random effects.

8.4.3.2 Production Scenario with Fixed-Effect Model
In the case of a fixed-effect model as reference production scenario (results in Table
8.5 and Figure 8.16), each of the competing approach presents better performance in
signaling any kind of out-of-control condition when compared with the production
scenario with random-effect model. This can be easily explained by observing that
no extra variability is naturally affecting the in-control profiles.

The REG CC outperforms all of the other competing methods, even if in a few
cases, especially when a high severity of the out-of-control condition is considered,
the regression-based and the PCA CC may have comparable performance.

Note that for the out-of-control conditions considered in our study (half-frequency,
bi-lobe, and tri-lobe), the majority of alarms released by the REG CC are produced
by the multivariate control chart on the vector of fitted parameters, while the PCA
CC consists of a univariate control chart only (a Q control chart). As a matter of fact,
when PCA is performed in the case of a fixed-effect model, no significant PCs are
identified (Colosimo and Pacella 2007) as the PCA is performed after data centering
and this first step consists of subtracting the mean pattern (described by the fixed-
effect model) from each profile data. Thus, PCA is performed just on the error terms
and hence no significant PC is correctly reported. Also, note that in this case the Q
statistic is given by the sum of the squared difference between data observed at each
location and the average profile at that location.

It can be noted that the LOC CC presents the lowest overall power of detection
when compared to the competing methods. Also the OOR control chart does not
present a better performance than those that characterize the model-based control
chats (regression-based and PCA-based).

8.5 MOVING FROM 2D PROFILES TO 3D SURFACES

In the case of cylindrical features, Henke et al. (1999) presented an analytical model
for aiding the interpretation of the relationship between manufacturing processes
and the typical deviation from the ideal cylinder. The approach combines Chebyshev
polynomials and sinusoidal functions for representing axial errors and circular errors,
respectively. Subsequently, a similar approach was proposed by Zhang et al. (2005),
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Figure 8.17 The actual shape of one out of the 100 machined cylinders.

who used the Legendre polynomials instead of the Chebyshev ones to describe
the deviation along the cylinder axis, while keeping the sinusoidal functions for
describing the cross-section form errors. Regression models presented in the literature
on cylindrical specifications can be considered as starting reference to identify the
parametric models of the large-scale pattern characterizing all the cylindrical surfaces
machined. Figure 8.17 shows the shape of one real cylinder obtained by lathe-turning
(Colosimo et al. 2010) while Figure 8.18 shows some typical form errors associated
to machined surfaces (Henke et al. 1999 and Zhang et al. 2005).

Similarly to what was done for 2D profiles related with circularity, a parametric
model for the machined cylinder can be obtained by merging a large-scale pattern

Figure 8.18 Typical form errors in manufactured cylindrical surfaces (from left to right: three-lobed,
taper, hourglass, barrel, banana).
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Table 8.6 The Regressor Functions as a Function of the Location Indices
(ζ q, θ p) Shown in Figure 8.3

Order of the
Chebyshev
Polynomial.

Order of the
Periodic

Component Regressor

1 0 2 T0

(
ζq

)
cos

(
2θp

)

2 0 2 T0

(
ζq

)
sin

(
2θp

)

3 0 3 T0

(
ζq

)
cos

(
3θp

)

4 0 3 T0

(
ζq

)
sin

(
3θp

)

5 1 0 T1

(
ζq

)

6 1 2 T1

(
ζq

)
cos

(
2θp

)

7 1 2 T1

(
ζq

)
sin

(
2θp

)

8 1 3 T1

(
ζq

)
cos

(
3θp

)

9 1 3 T1

(
ζq

)
sin

(
3θp

)

10 2 0 T2

(
ζq

)

11 2 1 T2

(
ζq

)
cos

(
θp

)

12 2 1 T2

(
ζq

)
sin

(
θp

)

13 2 2 T2

(
ζq

)
cos

(
2θp

)

14 2 2 T2

(
ζq

)
sin

(
2θp

)

15 2 3 T2

(
ζq

)
cos

(
3θp

)

16 2 3 T2

(
ζq

)
sin

(
3θp

)

with a small-scale one. The large-scale component can be expressed as a combi-
nation of functions such as Ti

(
ζq

)
cos

(
hθp

)
or Ti

(
ζq

)
sin

(
hθp

)
i.e., as a combina-

tion of sinusoidal functions with frequency equal to h upr, multiplied by a second-
type Chebyshev polynomial of order i(i = 0, 1, 2), i.e., T0

(
ζq

) = 1, T1
(
ζq

) = 2ζq ,
T2

(
ζq

) = 4ζ 2
q − 1, where ζq = 2 q−1

Q−1 − 1.
From Table 8.6, which summarizes the expression of the regressor functions, it can

be observed that some of the possible combinations of the Chebyshev polynomials
and the periodic functions are not included as possible regressor functions. As exam-
ples, T0

(
ζq

)
, representing the (least-square) cylinder radius, or T0

(
ζq

)
cos

(
θp

)
and

T0
(
ζq

)
sin

(
θp

)
, associated to the translation of the (least-square) cylinder axis, are

not included in this table. Indeed, the large-scale component describes the deviation
of the observed data from the ideal cylinder. By definition of form error, only the de-
viation from a perfect cylinder has to be modeled and this is why polynomials aimed
at representing the cylinder radius or position can not be included in the cylindiricity
form error model.

As for the small-scale component, i.e., the error terms, they can be considered to
be uncorrelated and normally distributed. However, if the assumption of uncorrelated
residuals is rejected, models able to deal with spatial correlation structures should
be entailed. Colosimo et al. (2010) used approaches taken from spatial statistics to
deal with the issue of possibly correlated errors. In particular, they assumed that the
grid of equally spaced points observed on the machined surface is kept fixed, as it
were implemented on a coordinate measuring machine that automatically performs
the required measurement path. Given this fixed grid of measurement locations, each
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Figure 8.19 Plot of the neighbors of the rook-based (on the left) and the queen-based (on the right)
contiguity: the first-order and second-order neighbors of the center point (shown in black) are represented
in darker and lighter gray, respectively.

point can be related to a different set of adjacent points. Therefore, a hypothesis on
the adjacency, contiguity, or spatial weight matrices W(s) (s = 1, . . . , S) has to be
firstly considered.

Two traditional ways for defining these matrices are presented in the literature
on spatial statistics (Cressie 1993). The first is the rook-based contiguity, where
neighbors share a common border (Figure 8.19 on the left). The second is the queen-
based contiguity, which defines neighbors as locations that share either a border
or a vertex in their boundaries (Figure 8.19 on the right). In practice, a spatial
weights matrix is rather arbitrarily selected, especially when there is no formal
theoretical foundation for the extent of spatial interaction. Despite of the specific
type of contiguity structure (rook or queen-based), a SAR model of proper order can
be used as reference model for the noise term of the surfaces.

8.5.1 Quality Control Charts for Surface Monitoring

In order to detect out-of-control cylindrical surfaces, two alternative approaches can
be considered. The first approach is the simplest one and consists in computing
the OOC value associated to each machined surface and in monitoring it with an
individuals control chart.

Similarly to control charts suggested in the literature on profile monitoring, the
second approach consists of a multivariate control chart for monitoring the vector of
estimated parameters and a univariate control chart aimed at monitoring the estimated
residuals variance.

In the paper of Colosimo et al. (2010) the method for monitoring profile data
developed by Colosimo et al. (2008) was extended to 3D forms (i.e., surfaces). The
proposed approach combined a regression model with spatial correlated noise to
univariate and multivariate control charting and was applied to real data related to
cylindricity surfaces obtained by lathe-turning. The simulation study showed that the
results found in (Colosimo et al. 2008) for roundness profiles are confirmed when
surfaces are machined instead of profiles. In particular, the main results were that ap-
proaches based on monitoring the coefficients of the parametric model that describes
the systematic pattern of machined surface outperforms the industrial practice, which
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is based on monitoring a synthetic indicator of form error (such as the OOCs). Fur-
thermore, the simulation study showed that the extra effort required for modeling the
spatial correlation can be worthy just when the small-scale (e.g., correlation structure
and/or noise variance) characteristics of the machined surface are of interest.

8.6 CONCLUDING REMARKS

Data collected by measuring equipment can be modeled as functional data, where
the quality outcome (dependent variable) is actually a function of one or more lo-
cation variables (independent variables). In this framework, the present chapter has
introduced different approaches for profile monitoring of geometric features. Both
parametric models and nonparametric methods have been considered.

With the former kind of approaches, the in-control shape of the profiles is sum-
marized by a parametric model, while profile monitoring is based on monitoring the
parameters of this model (regression-based and PCA CC). On the other hand, with
the latter kind of approaches, one can monitor the discrepancies between observed
profiles and a baseline profile established using historical data. In this chapter, the
LOC CC has been considered to this aim. A Shewhart’s control chart on the geomet-
rical errors has been also included in the comparison study, as this kind of approach
is still the most representative of industrial practice.

By comparing the Phase I performance, which refers to the ability to obtain a
predefined false alarm rate when uncontaminated process samples are considered,
we can conclude that the extra effort required by an REG CC is worthwhile. Indeed,
a regression-based control chart can easily be designed, since the actual false alarm
rate can be achieved in practice using an analytic computation of the control limits,
despite the specific production scenario considered and the number of historical
data available. On the contrary, the actual false alarm rate presented by the other
approaches for profile monitoring can be very different from that expected.

By comparing the overall performance in Phase II, which refers to the ability to
signal a generic out-of-control condition of any severity for any type of production
scenario (with random-effect and fixed-effect model), we can conclude that the extra
effort required by the regression-based and PCA CC is also worthwhile. In fact, both
the regression-based and PCA CC are more effective in signaling a generic change
in the functional data. However, while the PCA CC shows superior robustness to
change of the productive scenario, the REG CC may produce poor performance
in signaling out-of-controls in the case of a production scenario with a random-
effects model.

Furthermore, although the LOC CC is less effective in Phase II than the parametric
approaches, the performance observed using this method is comparable to those
produced by the competing approaches in some cases. Given the simplicity of the
location control chart, its use in practice can be justified in these production situations,
even if attention should be paid to properly designing (Phase I) this tool. On the other
hand, the OOR CC is not suitable for profile monitoring and hence this approach is
not recommended for actual applications.
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Finally, in this chapter the method for monitoring 2D profile data has been also
extended to 3D forms (i.e., surfaces). In this direction, there is some work (Colosimo
et al. 2010) and we think that profile monitoring research will focus more and more
on this topic in the near future. Although a specific geometry was used in (Colosimo
et al. 2010), any 3D shape can be monitored with a similar approach, given that the
regression terms and the spatial weight matrices are appropriately selected.
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